When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for ⁡ >, and its analytic continuation elsewhere.

  3. Proof of the Euler product formula for the Riemann zeta function

    en.wikipedia.org/wiki/Proof_of_the_Euler_product...

    Leonhard Euler proved the Euler product formula for the Riemann zeta function in his thesis Variae observationes circa series infinitas (Various Observations about Infinite Series), published by St Petersburg Academy in 1737.

  4. Euler product - Wikipedia

    en.wikipedia.org/wiki/Euler_product

    Since for even values of s the Riemann zeta function ζ(s) has an analytic expression in terms of a rational multiple of π s, then for even exponents, this infinite product evaluates to a rational number. For example, since ζ(2) = ⁠ π 2 / 6 ⁠, ζ(4) = ⁠ π 4 / 90 ⁠, and ζ(8) = ⁠ π 8 / 9450 ⁠, then

  5. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    Zeros of the Riemann zeta except negative even integers are called "nontrivial zeros". The Riemann hypothesis states that the real part of every nontrivial zero must be ⁠ 1 / 2 ⁠. In other words, all known nontrivial zeros of the Riemann zeta are of the form z = ⁠ 1 / 2 ⁠ + yi where y is a real number.

  6. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    Specifically, the Riemann Hypothesis is about when 𝜁(s)=0; the official statement is, “Every nontrivial zero of the Riemann zeta function has real part 1/2.”

  7. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    The Riemann zeta function is defined for complex s with real part greater than 1 by the absolutely convergent infinite series = = = + + +Leonhard Euler considered this series in the 1730s for real values of s, in conjunction with his solution to the Basel problem.

  8. Leonhard Euler - Wikipedia

    en.wikipedia.org/wiki/Leonhard_Euler

    In doing so, he discovered the connection between the Riemann zeta function and prime numbers; this is known as the Euler product formula for the Riemann zeta function. [85] Euler invented the totient function φ(n), the number of positive integers less than or equal to the integer n that are coprime to n.

  9. Z function - Wikipedia

    en.wikipedia.org/wiki/Z_function

    It follows from the functional equation of the Riemann zeta function that the Z function is real for real values of t. It is an even function, and real analytic for real values. It follows from the fact that the Riemann–Siegel theta function and the Riemann zeta function are both holomorphic in the critical strip, where the imaginary part of ...