Search results
Results From The WOW.Com Content Network
Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils.It is found in essentially all eukaryotic cells, where it may be present at a concentration of over 100 μM; its mass is roughly 42 kDa, with a diameter of 4 to 7 nm.
Microfilaments, also called actin filaments, are protein filaments in the cytoplasm of eukaryotic cells that form part of the cytoskeleton. They are primarily composed of polymers of actin , but are modified by and interact with numerous other proteins in the cell.
The cytoskeleton consists of (a) microtubules, (b) microfilaments, and (c) intermediate filaments. [1]The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. [2]
Compared to the other parts of the cytoskeletons, the microfilaments contain the thinnest filaments, with a diameter of approximately 7 nm. Microfilaments are part of the cytoskeleton that are composed of protein called actin. Two strands of actin intertwined together form a filamentous structure allowing for the movement of motor proteins.
Within the lamellipodia are ribs of actin called microspikes, which, when they spread beyond the lamellipodium frontier, are called filopodia. [2] The lamellipodium is born of actin nucleation in the plasma membrane of the cell [ 1 ] and is the primary area of actin incorporation or microfilament formation of the cell.
The peripheral domain is the thin region surrounding the outer edge of the growth cone. It is composed primarily of an actin-based cytoskeleton, and contains the lamellipodia and filopodia which are highly dynamic. Microtubules, however, are known to transiently enter the peripheral region via a process called dynamic instability. The central ...
Remodeling of the cytoskeleton is central to the modulation of cell shape and migration. Filamin A, encoded by the FLNA gene, is a widely expressed filamin that regulates the reorganization of the actin cytoskeleton by interacting with integrins , transmembrane receptor complexes , and secondary messengers . [ 7 ]
This is highly dependent on the blue light receptor phototropin and the actin cytoskeleton, as actin bundles are seen to form along the anticlinal wall in blue light. [6] A protein called ANGUSTIFOLIA was also recently discovered to regulate nucleus movement in the dark by forming a complex that adjusts the alignment of actin filaments. [7]