When.com Web Search

  1. Ad

    related to: properties of equality worksheet kuta pdf problems free

Search results

  1. Results From The WOW.Com Content Network
  2. Equality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Equality_(mathematics)

    In mathematics, equality is a relationship between two quantities or expressions, stating that they have the same value, or represent the same mathematical object. [1] [2] Equality between A and B is written A = B, and pronounced "A equals B". In this equality, A and B are distinguished by calling them left-hand side (LHS), and right-hand side ...

  3. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  4. Free group - Wikipedia

    en.wikipedia.org/wiki/Free_group

    A free group of rank k clearly has subgroups of every rank less than k. Less obviously, a (nonabelian!) free group of rank at least 2 has subgroups of all countable ranks. The commutator subgroup of a free group of rank k > 1 has infinite rank; for example for F(a,b), it is freely generated by the commutators [a m, b n] for non-zero m and n.

  5. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  6. Distributive property - Wikipedia

    en.wikipedia.org/wiki/Distributive_property

    In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality (+) = + is always true in elementary algebra. For example, in elementary arithmetic , one has 2 ⋅ ( 1 + 3 ) = ( 2 ⋅ 1 ) + ( 2 ⋅ 3 ) . {\displaystyle 2\cdot (1+3)=(2\cdot 1)+(2\cdot 3).}

  7. Theory of pure equality - Wikipedia

    en.wikipedia.org/wiki/Theory_of_pure_equality

    The pure theory of equality contains formulas of first-order logic with equality, where the only predicate symbol is equality itself and there are no function symbols. Consequently, the only form of an atomic formula is x = y {\displaystyle x=y} where x , y {\displaystyle x,y} are (possibly identical) variables.

  8. Equivalence relation - Wikipedia

    en.wikipedia.org/wiki/Equivalence_relation

    An implication of model theory is that the properties defining a relation can be proved independent of each other (and hence necessary parts of the definition) if and only if, for each property, examples can be found of relations not satisfying the given property while satisfying all the other properties. Hence the three defining properties of ...

  9. Identity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Identity_(mathematics)

    Visual proof of the Pythagorean identity: for any angle , the point (,) = (⁡, ⁡) lies on the unit circle, which satisfies the equation + =.Thus, ⁡ + ⁡ =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...