Search results
Results From The WOW.Com Content Network
Other denotations include sq. deg. and (°) 2. Just as degrees are used to measure parts of a circle, square degrees are used to measure parts of a sphere. Analogous to one degree being equal to π / 180 radians, a square degree is equal to ( π / 180 ) 2 steradians (sr), or about 1 / 3283 sr or about 3.046 × 10 −4 sr.
Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane.
A degree (in full, a degree of arc, arc degree, or arcdegree), usually denoted by ° (the degree symbol), is a measurement of a plane angle in which one full rotation is 360 degrees. [4] It is not an SI unit—the SI unit of angular measure is the radian—but it is mentioned in the SI brochure as an accepted unit. [5]
The values of sine and cosine of 30 and 60 degrees are derived by analysis of the equilateral triangle. In an equilateral triangle, the 3 angles are equal and sum to 180°, therefore each corner angle is 60°. Bisecting one corner, the special right triangle with angles 30-60-90 is obtained.
The turn (symbol tr or pla) is a unit of plane angle measurement that is the measure of a complete angle—the angle subtended by a complete circle at its center. One turn is equal to 2π radians, 360 degrees or 400 gradians. As an angular unit, one turn also corresponds to one cycle (symbol cyc or c) [1] or to one revolution (symbol rev or r). [2]
It is defined such that one radian is the angle subtended at the centre of a circle by an arc that is equal in length to the radius. [2] The unit was formerly an SI supplementary unit and is currently a dimensionless SI derived unit, [2] defined in the SI as 1 rad = 1 [3] and expressed in terms of the SI base unit metre (m) as rad = m/m. [4]
The angle subtended at the center of a circle by an arc whose length is equal to the circle's radius. One full revolution encompasses 2π radians. = 1 rad sextant: ≡ 60° ≈ 1.047 198 rad: sign: ≡ 30° ≈ 0.523 599 rad
In the special cases of one of the diagonals or sides being a diameter of the circle, this theorem gives rise directly to the angle sum and difference trigonometric identities. [17] The relationship follows most easily when the circle is constructed to have a diameter of length one, as shown here.