Search results
Results From The WOW.Com Content Network
In geometry, the semiperimeter of a polygon is half its perimeter. Although it has such a simple derivation from the perimeter, the semiperimeter appears frequently enough in formulas for triangles and other figures that it is given a separate name. When the semiperimeter occurs as part of a formula, it is typically denoted by the letter s.
A triangle with sides a, b, and c. In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths , , . Letting be the semiperimeter of the triangle, = (+ +), the area is [1]
In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis ( major semiaxis ) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus , and ...
In Euclidean geometry, Brahmagupta's formula, named after the 7th century Indian mathematician, ... where s, the semiperimeter, is defined to be
The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);
A triangle with sides <, semiperimeter = (+ +), area, altitude opposite the longest side, circumradius, inradius, exradii,, tangent to ,, respectively, and medians,, is a right triangle if and only if any one of the statements in the following six categories is true. Each of them is thus also a property of any right triangle.
where K is the area of the quadrilateral and s is its semiperimeter. For a tangential quadrilateral with given sides, the inradius is maximum when the quadrilateral is also cyclic (and hence a bicentric quadrilateral). In terms of the tangent lengths, the incircle has radius [8]: Lemma2 [14]
By Euler's theorem in geometry, the distance between the circumcenter O and the incenter I is O I ¯ = R ( R − 2 r ) , {\displaystyle {\overline {OI}}={\sqrt {R(R-2r)}},} where r is the incircle radius and R is the circumcircle radius; hence the circumradius is at least twice the inradius ( Euler's triangle inequality ), with equality only in ...