Ad
related to: 3d display methods in computer graphics examples
Search results
Results From The WOW.Com Content Network
A 3D display is a display device capable of conveying depth to the viewer. Many 3D displays are stereoscopic displays, which produce a basic 3D effect by means of stereopsis, but can cause eye strain and visual fatigue. Newer 3D displays such as holographic and light field displays produce a more realistic 3D effect by combining stereopsis and ...
3D graphics stand in contrast to 2D computer graphics which typically use completely different methods and formats for creation and rendering. 3D computer graphics rely on many of the same algorithms as 2D computer vector graphics in the wire-frame model and 2D computer raster graphics in the final rendered display.
The result is a graphic that contains conceptual properties to interpret the figure or image as not actually flat (2D), but rather, as a solid object (3D) being viewed on a 2D display. 3D objects are largely displayed on two-dimensional mediums (such as paper and computer monitors).
This is a list of models and meshes commonly used in 3D computer graphics for testing and demonstrating rendering algorithms and visual effects. Their use is important for comparing results, similar to the way standard test images are used in image processing.
In 3D computer graphics, a wire-frame model (also spelled wireframe model) is a visual representation of a three-dimensional (3D) physical object. It is based on a polygon mesh or a volumetric mesh, created by specifying each edge of the physical object where two mathematically continuous smooth surfaces meet, or by connecting an object's constituent vertices using (straight) lines or curves.
A Blender screenshot displaying the 3D test model Suzanne. Computer graphics deals with generating images and art with the aid of computers.Computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications.
In 3D computer graphics, hidden-surface determination (also known as shown-surface determination, hidden-surface removal (HSR), occlusion culling (OC) or visible-surface determination (VSD)) is the process of identifying what surfaces and parts of surfaces can be seen from a particular viewing angle.
Modern 3D computer graphics rely heavily on a simplified reflection model called the Phong reflection model (not to be confused with Phong shading). In the refraction of light, an important concept is the refractive index; in most 3D programming implementations, the term for this value is "index of refraction" (usually shortened to IOR).