When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    Data normalization (or feature scaling) includes methods that rescale input data so that the features have the same range, mean, variance, or other statistical properties. For instance, a popular choice of feature scaling method is min-max normalization , where each feature is transformed to have the same range (typically [ 0 , 1 ...

  3. Normalization (statistics) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(statistics)

    In the simplest cases, normalization of ratings means adjusting values measured on different scales to a notionally common scale, often prior to averaging. In more complicated cases, normalization may refer to more sophisticated adjustments where the intention is to bring the entire probability distributions of adjusted values into alignment.

  4. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Without normalization, the clusters were arranged along the x-axis, since it is the axis with most of variation. After normalization, the clusters are recovered as expected. In machine learning, we can handle various types of data, e.g. audio signals and pixel values for image data, and this data can include multiple dimensions. Feature ...

  5. Data transformation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Data_transformation...

    The reciprocal transformation, some power transformations such as the Yeo–Johnson transformation, and certain other transformations such as applying the inverse hyperbolic sine, can be meaningfully applied to data that include both positive and negative values [10] (the power transformation is invertible over all real numbers if λ is an odd ...

  6. Quantile normalization - Wikipedia

    en.wikipedia.org/wiki/Quantile_normalization

    In statistics, quantile normalization is a technique for making two distributions identical in statistical properties. To quantile-normalize a test distribution to a reference distribution of the same length, sort the test distribution and sort the reference distribution.

  7. Power transform - Wikipedia

    en.wikipedia.org/wiki/Power_transform

    In statistics, a power transform is a family of functions applied to create a monotonic transformation of data using power functions.It is a data transformation technique used to stabilize variance, make the data more normal distribution-like, improve the validity of measures of association (such as the Pearson correlation between variables), and for other data stabilization procedures.

  8. Canonicalization - Wikipedia

    en.wikipedia.org/wiki/Canonicalization

    Canonicalization of filenames is important for computer security. For example, a web server may have a restriction that only files under the cgi directory C:\inetpub\wwwroot\cgi-bin may be executed. This rule is enforced by checking that the path starts with C:\inetpub\wwwroot\cgi-bin\ and only then executing it.

  9. Data transformation (computing) - Wikipedia

    en.wikipedia.org/wiki/Data_transformation...

    Traditionally, data transformation has been a bulk or batch process, [6] whereby developers write code or implement transformation rules in a data integration tool, and then execute that code or those rules on large volumes of data. [7] This process can follow the linear set of steps as described in the data transformation process above.