Ads
related to: magnetic levitation by rotation
Search results
Results From The WOW.Com Content Network
Magnetic levitation can be stabilised using different techniques; here rotation (spin) is used. Magnetic levitation (maglev) or magnetic suspension is a method by which an object is suspended with no support other than magnetic fields. Magnetic force is used to counteract the effects of the gravitational force and any other forces. [2]
Spin-stabilized magnetic levitation is a phenomenon of magnetic levitation whereby a spinning magnet or array of magnets (typically as a top) is levitated via magnetic forces above another magnet or array of magnets, and stabilised by gyroscopic effect due to a spin rate that is neither too fast, nor too slow to allow for a necessary precession.
This magnetic orientation process replicates that applied by a magnetic recording tape head to the magnetic tape coating during the recording process. The principle was further described by James (Jim) M. Winey of Magnepan in 1970, for the ideal case of continuously rotating magnetization, induced by a one-sided stripe-shaped coil.
A magnetic bearing. A magnetic bearing is a type of bearing that supports a load using magnetic levitation. Magnetic bearings support moving parts without physical contact. For instance, they are able to levitate a rotating shaft and permit relative motion with very low friction and no mechanical wear. Magnetic bearings support the highest ...
The levitated top's stabilizing rotation undergoes natural, gradual slowing, so that the levitation phenomenon fails within four minutes unless external power is supplied to sustain rotation. To levitate the top, a plastic plate is placed on top of the magnetic base, and the top is spun on the plate at 25–50 rotations per second (1500–3000 ...
Electrodynamic suspension (EDS) is a form of magnetic levitation in which there are conductors which are exposed to time-varying magnetic fields. This induces eddy currents in the conductors that creates a repulsive magnetic field which holds the two objects apart. These time-varying magnetic fields can be caused by relative motion between two ...
Magnetic levitation is in development for use for transportation systems. For example, the Maglev includes trains that are levitated by a large number of magnets. Due to the lack of friction on the guide rails, they are faster, quieter, and smoother than wheeled mass transit systems. Electrodynamic suspension uses AC magnetic fields.
An electrodynamic wheel is a type of wheel proposed for use in electrodynamic levitation of the maglev train transport system. [1] [2] [3]Unlike a conventional wheel, an electrodynamic wheel has a rim studded with magnets of alternating poles.