Search results
Results From The WOW.Com Content Network
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
Blitz++ is a C++ template class library that provides high-performance multidimensional array containers for scientific computing. Boost uBLAS J. Walter, M. Koch C++ 2000 1.84.0 / 12.2023 Free Boost Software License uBLAS is a C++ template class library that provides BLAS level 1, 2, 3 functionality for dense, packed and sparse matrices. Dlib
The re-sampling techniques are implemented in four different categories: undersampling the majority class, oversampling the minority class, combining over and under sampling, and ensembling sampling. The Python implementation of 85 minority oversampling techniques with model selection functions are available in the smote-variants [2] package.
In statistics, the mode is the value that appears most often in a set of data values. [1] If X is a discrete random variable, the mode is the value x at which the probability mass function takes its maximum value (i.e., x=argmax x i P(X = x i)). In other words, it is the value that is most likely to be sampled.
The syntax :=, called the "walrus operator", was introduced in Python 3.8. It assigns values to variables as part of a larger expression. [106] In Python, == compares by value. Python's is operator may be used to compare object identities (comparison by reference), and comparisons may be chained—for example, a <= b <= c.
The softmax function, also known as softargmax [1]: 184 or normalized exponential function, [2]: 198 converts a vector of K real numbers into a probability distribution of K possible outcomes. It is a generalization of the logistic function to multiple dimensions, and is used in multinomial logistic regression.
A common subclass of classification is probabilistic classification. Algorithms of this nature use statistical inference to find the best class for a given instance. Unlike other algorithms, which simply output a "best" class, probabilistic algorithms output a probability of the instance being a member of each of the possible classes. The best ...
Real mining problems would typically have more complex antecedents, but usually focus on single-value consequents. Most mining algorithms would determine the following rules (targeting models): Rule 1: A implies 0; Rule 2: B implies 1; because these are simply the most common patterns found in the data.