Search results
Results From The WOW.Com Content Network
A Watt quadrilateral is a quadrilateral with a pair of opposite sides of equal length. [6] A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7] A diametric quadrilateral is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle. [8]
According to the characterization of these quadrilaterals, the two red squares on two opposite sides of the quadrilateral have the same total area as the two blue squares on the other pair of opposite sides. In Euclidean geometry, an orthodiagonal quadrilateral is a quadrilateral in which the diagonals cross at right angles.
The diagonals of a cube with side length 1. AC' (shown in blue) is a space diagonal with length , while AC (shown in red) is a face diagonal and has length .. In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge.
Not every parallelogram is a rhombus, though any parallelogram with perpendicular diagonals (the second property) is a rhombus. In general, any quadrilateral with perpendicular diagonals, one of which is a line of symmetry, is a kite. Every rhombus is a kite, and any quadrilateral that is both a kite and parallelogram is a rhombus.
A quadrilateral is a kite if and only if any one of the following conditions is true: The four sides can be split into two pairs of adjacent equal-length sides. [7] One diagonal crosses the midpoint of the other diagonal at a right angle, forming its perpendicular bisector. [9] (In the concave case, the line through one of the diagonals bisects ...
The angle between a side and a diagonal is equal to the angle between the opposite side and the same diagonal. The diagonals cut each other in mutually the same ratio (this ratio is the same as that between the lengths of the parallel sides). The diagonals cut the quadrilateral into four triangles of which one opposite pair have equal areas ...
If the quadrilateral is convex or concave (that is, not self-intersecting), then the area of the Varignon parallelogram is half the area of the quadrilateral. Proof without words (see figure): An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal.
A quadrilateral is equidiagonal if and only if [5]: p.19, [4]: Cor.4 =. This is a direct consequence of the fact that the area of a convex quadrilateral is twice the area of its Varignon parallelogram and that the diagonals in this parallelogram are the bimedians of the quadrilateral.