Search results
Results From The WOW.Com Content Network
In Newtonian mechanics, for one-dimensional simple harmonic motion, the equation of motion, which is a second-order linear ordinary differential equation with constant coefficients, can be obtained by means of Newton's second law and Hooke's law for a mass on a spring.
A simple pendulum exhibits approximately simple harmonic motion under the conditions of no damping and small amplitude. Assuming no damping, the differential equation governing a simple pendulum of length l {\displaystyle l} , where g {\displaystyle g} is the local acceleration of gravity , is d 2 θ d t 2 + g l sin θ = 0. {\displaystyle ...
The motion is simple harmonic motion where θ 0 is the amplitude of the oscillation (that is, the maximum angle between the rod of the pendulum and the vertical). The corresponding approximate period of the motion is then
For a number of particles, the equation of motion for one particle i is: [7] ... SHM, DHM, SHO, and DHO refer to simple harmonic motion, damped harmonic motion ...
This is the equation for a simple harmonic oscillator with angular frequency: ... Which is a simple harmonic motion. General case. As seen above, the effective mass ...
Harmonic motion can mean: the displacement of the particle executing oscillatory motion that can be expressed in terms of sine or cosine functions known as harmonic motion . The motion of a Harmonic oscillator (in physics), which can be: Simple harmonic motion; Complex harmonic motion; Keplers laws of planetary motion (in physics, known as the ...
When calculating the period of a simple pendulum, the small-angle approximation for sine is used to allow the resulting differential equation to be solved easily by comparison with the differential equation describing simple harmonic motion.
The Hooke's atom is a simple model of the helium atom using the quantum harmonic oscillator. Modelling phonons, as discussed above. A charge q {\displaystyle q} with mass m {\displaystyle m} in a uniform magnetic field B {\displaystyle \mathbf {B} } is an example of a one-dimensional quantum harmonic oscillator: Landau quantization .