When.com Web Search

  1. Ad

    related to: radon transform algebra 3 test answers

Search results

  1. Results From The WOW.Com Content Network
  2. Tomographic reconstruction - Wikipedia

    en.wikipedia.org/wiki/Tomographic_reconstruction

    In theory, the inverse Radon transformation would yield the original image. The projection-slice theorem tells us that if we had an infinite number of one-dimensional projections of an object taken at an infinite number of angles, we could perfectly reconstruct the original object, f ( x , y ) {\displaystyle f(x,y)} .

  3. Radon transform - Wikipedia

    en.wikipedia.org/wiki/Radon_transform

    Radon transform. Maps f on the (x, y)-domain to Rf on the (α, s)-domain.. In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line.

  4. Penrose transform - Wikipedia

    en.wikipedia.org/wiki/Penrose_transform

    In theoretical physics, the Penrose transform, introduced by Roger Penrose (1967, 1968, 1969), is a complex analogue of the Radon transform that relates massless fields on spacetime, or more precisely the space of solutions to massless field equations, to sheaf cohomology groups on complex projective space.

  5. Lebesgue–Stieltjes integration - Wikipedia

    en.wikipedia.org/wiki/Lebesgue–Stieltjes...

    Lebesgue–Stieltjes integrals, named for Henri Leon Lebesgue and Thomas Joannes Stieltjes, are also known as Lebesgue–Radon integrals or just Radon integrals, ...

  6. Minlos's theorem - Wikipedia

    en.wikipedia.org/wiki/Minlos's_theorem

    In the mathematics of topological vector spaces, Minlos's theorem states that a cylindrical measure on the dual of a nuclear space is a Radon measure if its Fourier transform is continuous. It is named after Robert Adol'fovich Minlos and can be proved using Sazonov's theorem .

  7. X-ray transform - Wikipedia

    en.wikipedia.org/wiki/X-ray_transform

    In mathematics, the X-ray transform (also called ray transform [1] or John transform) is an integral transform introduced by Fritz John in 1938 [2] that is one of the cornerstones of modern integral geometry. It is very closely related to the Radon transform, and coincides with it in two dimensions.

  8. Funk transform - Wikipedia

    en.wikipedia.org/wiki/Funk_transform

    In the mathematical field of integral geometry, the Funk transform (also known as Minkowski–Funk transform, Funk–Radon transform or spherical Radon transform) is an integral transform defined by integrating a function on great circles of the sphere. It was introduced by Paul Funk in 1911, based on the work of Minkowski (1904).

  9. Radon measure - Wikipedia

    en.wikipedia.org/wiki/Radon_measure

    A real-valued Radon measure is defined to be any continuous linear form on K (X); they are precisely the differences of two Radon measures. This gives an identification of real-valued Radon measures with the dual space of the locally convex space K (X). These real-valued Radon measures need not be signed measures.