Search results
Results From The WOW.Com Content Network
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
Simple cases, where observations are complete, can be dealt with by using the sample covariance matrix. The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive ...
In probability theory and statistics, a cross-covariance matrix is a matrix whose element in the i, j position is the covariance between the i-th element of a random vector and j-th element of another random vector. A random vector is a random variable with multiple dimensions.
Random matrix theory in this content has its representative the Marchenko-Pastur distribution, which guarantees the theoretical high and low limits of the eigenvalues associated with a random variable covariance matrix. This matrix calculated in this way becomes the null hypothesis that allows one to find the eigenvalues (and their eigenvectors ...
With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.
The covariance matrix (also called second central moment or variance-covariance matrix) of an random vector is an matrix whose (i,j) th element is the covariance between the i th and the j th random variables.
The covariance matrix of an random vector is an matrix whose (,) th element is the covariance between the i th and the j th random variables. [ 2 ] : p.372 Unlike in the case of real random variables, the covariance between two random variables involves the complex conjugate of one of the two.
The Kalman filter tracks the average state of a system as a vector x of length N and covariance as an N × N matrix P. The matrix P is always positive semi-definite and can be decomposed into LL T. The columns of L can be added and subtracted from the mean x to form a set of 2N vectors called sigma points. These sigma points completely capture ...