Search results
Results From The WOW.Com Content Network
In his 1803 publication about the quantity of gases absorbed by water, [1] William Henry described the results of his experiments: … water takes up, of gas condensed by one, two, or more additional atmospheres, a quantity which, ordinarily compressed, would be equal to twice, thrice, &c. the volume absorbed under the common pressure of the atmosphere.
The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. [1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.
The enthalpy of mixing is zero [2] as is the volume change on mixing by definition; the closer to zero the enthalpy of mixing is, the more "ideal" the behavior of the solution becomes. The vapor pressures of the solvent and solute obey Raoult's law and Henry's law , respectively, [ 3 ] and the activity coefficient (which measures deviation from ...
Here, the green substance has a greater solubility in the lower layer than in the upper layer. The partition coefficient, abbreviated P, is defined as a particular ratio of the concentrations of a solute between the two solvents (a biphase of liquid phases), specifically for un-ionized solutes, and the logarithm of the ratio is thus log P.
To create the solution, 11.6 g NaCl is placed in a volumetric flask, dissolved in some water, then followed by the addition of more water until the total volume reaches 100 mL. The density of water is approximately 1000 g/L and its molar mass is 18.02 g/mol (or 1/18.02 = 0.055 mol/g). Therefore, the molar concentration of water is
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
‡ Second column of table indicates solubility at each given temperature in volume of CO 2 as it would be measured at 101.3 kPa and 0 °C per volume of water. The solubility is given for "pure water", i.e., water which contain only CO 2. This water is going to be acidic. For example, at 25 °C the pH of 3.9 is expected (see carbonic acid).
M is the molar mass of the solvent. T b is boiling point of the pure solvent in kelvin. ΔH vap is the molar enthalpy of vaporization of the solvent. Through the procedure called ebullioscopy, a known constant can be used to calculate an unknown molar mass. The term ebullioscopy means "boiling measurement" in Latin.