Search results
Results From The WOW.Com Content Network
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive-definite matrices, the SCM is a biased and inefficient estimator. [1]
In Julia, the CovarianceMatrices.jl package [11] supports several types of heteroskedasticity and autocorrelation consistent covariance matrix estimation including Newey–West, White, and Arellano. In R , the packages sandwich [ 6 ] and plm [ 12 ] include a function for the Newey–West estimator.
A similar canonical set of sigma points can be generated in any number of dimensions by taking the zero vector and the points comprising the rows of the identity matrix, computing the mean of the set of points, subtracting the mean from each point so that the resulting set has a mean of zero, then computing the covariance of the zero-mean set ...
Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix:
In probability theory and statistics, a cross-covariance matrix is a matrix whose element in the i, j position is the covariance between the i-th element of a random vector and j-th element of another random vector. When the two random vectors are the same, the cross-covariance matrix is referred to as covariance matrix.
Multivariate analysis of covariance (MANCOVA) is an extension of analysis of covariance methods to cover cases where there is more than one dependent variable and where the control of concomitant continuous independent variables – covariates – is required.
The ensemble Kalman filter (EnKF) is a Monte Carlo implementation of the Bayesian update problem: given a probability density function (PDF) of the state of the modeled system (the prior, called often the forecast in geosciences) and the data likelihood, Bayes' theorem is used to obtain the PDF after the data likelihood has been taken into account (the posterior, often called the analysis).