Search results
Results From The WOW.Com Content Network
The convex-hull operation is needed for the set of convex sets to form a lattice, in which the "join" operation is the convex hull of the union of two convex sets = = ( ()). The intersection of any collection of convex sets is itself convex, so the convex subsets of a (real or complex) vector space form a complete lattice .
Convex geometry is a relatively young mathematical discipline. Although the first known contributions to convex geometry date back to antiquity and can be traced in the works of Euclid and Archimedes, it became an independent branch of mathematics at the turn of the 20th century, mainly due to the works of Hermann Brunn and Hermann Minkowski in dimensions two and three.
An affine convex cone is the set resulting from applying an affine transformation to a convex cone. [10] A common example is translating a convex cone by a point p: p + C. Technically, such transformations can produce non-cones. For example, unless p = 0, p + C is not a linear cone. However, it is still called an affine convex cone.
Carathéodory's theorem (convex hull) - If a point x of R d lies in the convex hull of a set P, there is a subset of P with d+1 or fewer points such that x lies in its convex hull. Choquet theory - an area of functional analysis and convex analysis concerned with measures with support on the extreme points of a convex set C.
In mathematics, a subset C of a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced (some people use the term "circled" instead of "balanced"), in which case it is called a disk. The disked hull or the absolute convex hull of a set is the intersection of all disks containing that set.
A dodecahedron is a convex body.. In mathematics, a convex body in -dimensional Euclidean space is a compact convex set with non-empty interior.Some authors do not require a non-empty interior, merely that the set is non-empty.
A function (in black) is convex if and only if the region above its graph (in green) is a convex set. A graph of the bivariate convex function x 2 + xy + y 2. Convex vs. Not convex
The classical convex polytopes may be considered tessellations, or tilings, of spherical space. Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less.