When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    For broader coverage of this topic, see Intersection (mathematics). The red dot represents the point at which the two lines intersect. In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the lineline intersection ...

  3. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    The intersection point above is for the infinitely long lines defined by the points, rather than the line segments between the points, and can produce an intersection point not contained in either of the two line segments. In order to find the position of the intersection in respect to the line segments, we can define lines L 1 and L 2 in terms ...

  4. Intersection - Wikipedia

    en.wikipedia.org/wiki/Intersection

    The intersection (red) of two disks (white and red with black boundaries). The circle (black) intersects the line (purple) in two points (red). The disk (yellow) intersects the line in the line segment between the two red points. The intersection of D and E is shown in grayish purple. The intersection of A with any of B, C, D, or E is the empty ...

  5. Line–plane intersection - Wikipedia

    en.wikipedia.org/wiki/Line–plane_intersection

    Line–plane intersection. The three possible plane-line relationships in three dimensions. (Shown in each case is only a portion of the plane, which extends infinitely far.) In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is ...

  6. Line–sphere intersection - Wikipedia

    en.wikipedia.org/wiki/Line–sphere_intersection

    In analytic geometry, a line and a sphere can intersect in three ways: Intersection in two points. Methods for distinguishing these cases, and determining the coordinates for the points in the latter cases, are useful in a number of circumstances. For example, it is a common calculation to perform during ray tracing.

  7. Playfair's axiom - Wikipedia

    en.wikipedia.org/wiki/Playfair's_axiom

    Two straight lines which intersect one another cannot be both parallel to the same straight line. Playfair acknowledged Ludlam and others for simplifying the Euclidean assertion. In later developments the point of intersection of the two lines came first, and the denial of two parallels became expressed as a unique parallel through the given point.

  8. Line coordinates - Wikipedia

    en.wikipedia.org/wiki/Line_coordinates

    A linear equation in line coordinates has the form al + bm + c = 0, where a, b and c are constants. Suppose (l, m) is a line that satisfies this equation. If c is not 0 then lx + my + 1 = 0, where x = a / c and y = b / c, so every line satisfying the original equation passes through the point (x, y). Conversely, any line through (x, y ...

  9. Homogeneous coordinates - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_coordinates

    For example, in perspective projection, a position in space is associated with the line from it to a fixed point called the center of projection. The point is then mapped to a plane by finding the point of intersection of that plane and the line. This produces an accurate representation of how a three-dimensional object appears to the eye.