Search results
Results From The WOW.Com Content Network
In mathematics, a binary relation on a set is reflexive if it relates every element of to itself. [1][2] An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity.
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3), and likewise between 3 and 4 (denoted as 3 < 4), but not between the values ...
Binary relations, and especially homogeneous relations, are used in many branches of mathematics to model a wide variety of concepts. These include, among others: the "is greater than", "is equal to", and "divides" relations in arithmetic; the "is congruent to" relation in geometry; the "is adjacent to" relation in graph theory;
A binary relation that is antisymmetric, transitive, and reflexive (but not necessarily total) is a partial order. A group with a compatible total order is a totally ordered group. There are only a few nontrivial structures that are (interdefinable as) reducts of a total order. Forgetting the orientation results in a betweenness relation.
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number is equal to itself (reflexive). If , then (symmetric).
Partial orders. A reflexive, weak, [1] or non-strict partial order, [2] commonly referred to simply as a partial order, is a homogeneous relation ≤ on a set that is reflexive, antisymmetric, and transitive. That is, for all it must satisfy: Reflexivity: , i.e. every element is related to itself.
A relation is quasi-reflexive if, and only if, it is both left and right quasi-reflexive. The previous 6 alternatives are far from being exhaustive; e.g., the binary relation xRy defined by y = x 2 is neither irreflexive, nor coreflexive, nor reflexive, since it contains the pair (0, 0), and (2, 4), but not (2, 2), respectively. The latter two ...
Reflexive closure. In mathematics, the reflexive closure of a binary relation on a set is the smallest reflexive relation on that contains A relation is called reflexive if it relates every element of to itself. For example, if is a set of distinct numbers and means " is less than ", then the reflexive closure of is the relation " is less than ...