When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Covariance and correlation - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_correlation

    Notably, correlation is dimensionless while covariance is in units obtained by multiplying the units of the two variables. If Y always takes on the same values as X , we have the covariance of a variable with itself (i.e. σ X X {\displaystyle \sigma _{XX}} ), which is called the variance and is more commonly denoted as σ X 2 , {\displaystyle ...

  3. Analysis of covariance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_covariance

    Mathematically, ANCOVA decomposes the variance in the DV into variance explained by the CV(s), variance explained by the categorical IV, and residual variance. Intuitively, ANCOVA can be thought of as 'adjusting' the DV by the group means of the CV(s). [1] The ANCOVA model assumes a linear relationship between the response (DV) and covariate (CV):

  4. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  5. Correlogram - Wikipedia

    en.wikipedia.org/wiki/Correlogram

    In the analysis of data, a correlogram is a chart of correlation statistics. For example, in time series analysis, a plot of the sample autocorrelations versus (the time lags) is an autocorrelogram. If cross-correlation is plotted, the result is called a cross-correlogram.

  6. Path analysis (statistics) - Wikipedia

    en.wikipedia.org/wiki/Path_analysis_(statistics)

    In statistics, path analysis is used to describe the directed dependencies among a set of variables. This includes models equivalent to any form of multiple regression analysis, factor analysis, canonical correlation analysis, discriminant analysis, as well as more general families of models in the multivariate analysis of variance and covariance analyses (MANOVA, ANOVA, ANCOVA).

  7. Cochran's C test - Wikipedia

    en.wikipedia.org/wiki/Cochran's_C_test

    Cochran's test, [1] named after William G. Cochran, is a one-sided upper limit variance outlier statistical test .The C test is used to decide if a single estimate of a variance (or a standard deviation) is significantly larger than a group of variances (or standard deviations) with which the single estimate is supposed to be comparable.

  8. Comparison of statistical packages - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_statistical...

    Unit root test Cointegration test VAR Multivariate GARCH; Alteryx: Yes No Analyse-it: EViews: Yes Yes Yes Yes Yes Yes GAUSS: Yes Yes Yes Yes Yes Yes GraphPad Prism: No No No No No gretl: Yes Yes Yes Yes Yes Yes [26] JMP: Yes LIMDEP: Yes Yes Yes Yes Yes No Mathematica: Yes [27] Yes Yes [28] Yes Yes [29] Yes [30] MATLAB+Econometrics Toolbox : Yes ...

  9. Multivariate analysis of covariance - Wikipedia

    en.wikipedia.org/wiki/Multivariate_analysis_of...

    In statistics, a covariate represents a source of variation that has not been controlled in the experiment and is believed to affect the dependent variable. [8] The aim of such techniques as ANCOVA is to remove the effects of such uncontrolled variation, in order to increase statistical power and to ensure an accurate measurement of the true relationship between independent and dependent ...