When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    TensorFlow is available on 64-bit Linux, macOS, Windows, and mobile computing platforms including Android and iOS. [ citation needed ] Its flexible architecture allows for easy deployment of computation across a variety of platforms (CPUs, GPUs, TPUs ), and from desktops to clusters of servers to mobile and edge devices .

  3. PlaidML - Wikipedia

    en.wikipedia.org/wiki/PlaidML

    PlaidML is a portable tensor compiler.Tensor compilers bridge the gap between the universal mathematical descriptions of deep learning operations, such as convolution, and the platform and chip-specific code needed to perform those operations with good performance.

  4. Tensor Processing Unit - Wikipedia

    en.wikipedia.org/wiki/Tensor_Processing_Unit

    Tensor Processing Unit (TPU) is an AI accelerator application-specific integrated circuit (ASIC) developed by Google for neural network machine learning, using Google's own TensorFlow software. [2]

  5. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    PyTorch has also been developing support for other GPU platforms, for example, AMD's ROCm [27] and Apple's Metal Framework. [28] PyTorch supports various sub-types of Tensors. [29] Note that the term "tensor" here does not carry the same meaning as tensor in mathematics or physics.

  6. List of Rockchip products - Wikipedia

    en.wikipedia.org/wiki/List_of_Rockchip_products

    Rockchip announced the first member of the RK33xx family at the CES show in January 2015. The RK3368 is a SoC targeting tablets and media boxes featuring a 64-bit octa-core Cortex-A53 CPU and an OpenGL ES 3.1-class GPU. [40] Octa-Core Cortex-A53 64-bit CPU, up to 1.5 GHz; PowerVR SGX6110 GPU with support for OpenGL 3.1 and OpenGL ES 3.0; 28 nm ...

  7. General-purpose computing on graphics processing units

    en.wikipedia.org/wiki/General-purpose_computing...

    This has implications for correctness which are considered important to some scientific applications. While 64-bit floating point values (double precision float) are commonly available on CPUs, these are not universally supported on GPUs. Some GPU architectures sacrifice IEEE compliance, while others lack double-precision.

  8. Pop!_OS - Wikipedia

    en.wikipedia.org/wiki/Pop!_OS

    The latest releases also have packages that allow for easy setup for TensorFlow and CUDA. [5] [6] Pop!_OS is maintained primarily by System76, with the release version source code hosted in a GitHub repository. Unlike many other Linux distributions, it is not community-driven, although outside programmers can contribute, view and modify the ...

  9. MLIR (software) - Wikipedia

    en.wikipedia.org/wiki/MLIR_(software)

    MLIR (Multi-Level Intermediate Representation) is a unifying software framework for compiler development. [1] MLIR can make optimal use of a variety of computing platforms such as central processing units (CPUs), graphics processing units (GPUs), data processing units (DPUs), Tensor Processing Units (TPUs), field-programmable gate arrays (FPGAs), artificial intelligence (AI) application ...