Search results
Results From The WOW.Com Content Network
Given a binary product-machines n-by-m matrix , rank order clustering [1] is an algorithm characterized by the following steps: . For each row i compute the number =; Order rows according to descending numbers previously computed
The algorithms for machine part grouping include Rank Order Clustering, Modified Rank Order Clustering, [18] and Similarity coefficients. There are also a number of mathematical models and algorithms to aid in planning a cellular manufacturing center, which take into account a variety of important variables such as, "multiple plant locations ...
These arise when individuals rank objects in order of preference. The data are then ordered lists of objects, arising in voting, education, marketing and other areas. Model-based clustering methods for rank data include mixtures of Plackett-Luce models and mixtures of Benter models, [29] [30] and mixtures of Mallows models. [31]
Direct clustering algorithm (DCA) is a methodology for identification of cellular manufacturing structure within an existing manufacturing shop. The DCA was introduced in 1982 by H.M. Chan and D.A. Milner [1] The algorithm restructures the existing machine / component (product) matrix of a shop by switching the rows and columns in such a way that a resulting matrix shows component families ...
There are several known constructions of rank codes, which are maximum rank distance (or MRD) codes with d = n − k + 1.The easiest one to construct is known as the (generalized) Gabidulin code, it was discovered first by Delsarte (who called it a Singleton system) and later by Gabidulin [2] (and Kshevetskiy [3]).
Automatic clustering algorithms are algorithms that can perform clustering without prior knowledge of data sets. In contrast with other cluster analysis techniques, automatic clustering algorithms can determine the optimal number of clusters even in the presence of noise and outlier points. [1] [needs context]
Similarity learning is used in information retrieval for learning to rank, in face verification or face identification, [9] [10] and in recommendation systems. Also, many machine learning approaches rely on some metric. This includes unsupervised learning such as clustering, which groups together close or
Learning to rank [1] or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems. [2] Training data may, for example, consist of lists of items with some partial order specified between items in ...