When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Parabolic trajectory - Wikipedia

    en.wikipedia.org/wiki/Parabolic_trajectory

    In astrodynamics or celestial mechanics a parabolic trajectory is a Kepler orbit with the eccentricity equal to 1 and is an unbound orbit that is exactly on the border between elliptical and hyperbolic. When moving away from the source it is called an escape orbit, otherwise a capture orbit.

  3. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    From a circular orbit, thrust applied in a direction opposite to the satellite's motion changes the orbit to an elliptical one; the satellite will descend and reach the lowest orbital point (the periapse) at 180 degrees away from the firing point; then it will ascend back. The period of the resultant orbit will be less than that of the original ...

  4. Kepler orbit - Wikipedia

    en.wikipedia.org/wiki/Kepler_orbit

    The following image illustrates a circle (grey), an ellipse (red), a parabola (green) and a hyperbola (blue) A diagram of the various forms of the Kepler Orbit and their eccentricities. Blue is a hyperbolic trajectory (e > 1). Green is a parabolic trajectory (e = 1). Red is an elliptical orbit (0 < e < 1). Grey is a circular orbit (e = 0).

  5. List of orbits - Wikipedia

    en.wikipedia.org/wiki/List_of_orbits

    If the speed of a parabolic orbit is increased it will become a hyperbolic orbit. Escape orbit: A parabolic orbit where the object has escape velocity and is moving away from the planet. Capture orbit: A parabolic orbit where the object has escape velocity and is moving toward the planet. Hyperbolic orbit: An orbit with the eccentricity greater ...

  6. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit (or capture orbit), and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section.

  7. Elliptic orbit - Wikipedia

    en.wikipedia.org/wiki/Elliptic_orbit

    In astrodynamics or celestial mechanics, an elliptic orbit or elliptical orbit is a Kepler orbit with an eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. In a stricter sense, it is a Kepler orbit with the eccentricity greater than 0 and less than 1 (thus excluding the circular orbit).

  8. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  9. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The planetary orbit is not a circle with epicycles, but an ellipse. The Sun is not at the center but at a focal point of the elliptical orbit. Neither the linear speed nor the angular speed of the planet in the orbit is constant, but the area speed (closely linked historically with the concept of angular momentum) is constant.