When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    Swift introduced half-precision floating point numbers in Swift 5.3 with the Float16 type. [20] OpenCL also supports half-precision floating point numbers with the half datatype on IEEE 754-2008 half-precision storage format. [21] As of 2024, Rust is currently working on adding a new f16 type for IEEE half-precision 16-bit floats. [22]

  3. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    Full Precision" in Direct3D 9.0 is a proprietary 24-bit floating-point format. Microsoft's D3D9 (Shader Model 2.0) graphics API initially supported both FP24 (as in ATI's R300 chip) and FP32 (as in Nvidia's NV30 chip) as "Full Precision", as well as FP16 as "Partial Precision" for vertex and pixel shader calculations performed by the graphics ...

  4. Type conversion - Wikipedia

    en.wikipedia.org/wiki/Type_conversion

    The integer is: 16777217 The float is: 16777216.000000 Their equality: 1 Note that 1 represents equality in the last line above. This odd behavior is caused by an implicit conversion of i_value to float when it is compared with f_value. The conversion causes loss of precision, which makes the values equal before the comparison. Important takeaways:

  5. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    A property of the single- and double-precision formats is that their encoding allows one to easily sort them without using floating-point hardware, as if the bits represented sign-magnitude integers, although it is unclear whether this was a design consideration (it seems noteworthy that the earlier IBM hexadecimal floating-point representation ...

  6. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    In single precision, the bias is 127, so in this example the biased exponent is 124; in double precision, the bias is 1023, so the biased exponent in this example is 1020. fraction = .01000… 2 . IEEE 754 adds a bias to the exponent so that numbers can in many cases be compared conveniently by the same hardware that compares signed 2's ...

  7. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    Programming languages that support arbitrary precision computations, either built-in, or in the standard library of the language: Ada: the upcoming Ada 202x revision adds the Ada.Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.Big_Reals packages to the standard library, providing arbitrary precision integers and real numbers.

  8. Precision (computer science) - Wikipedia

    en.wikipedia.org/wiki/Precision_(computer_science)

    Quadruple-precision floating-point format; Octuple-precision floating-point format; Of these, octuple-precision format is rarely used. The single- and double-precision formats are most widely used and supported on nearly all platforms. The use of half-precision format has been increasing especially in the field of machine learning since many ...

  9. bfloat16 floating-point format - Wikipedia

    en.wikipedia.org/wiki/Bfloat16_floating-point_format

    Bfloat16 is designed to maintain the number range from the 32-bit IEEE 754 single-precision floating-point format (binary32), while reducing the precision from 24 bits to 8 bits. This means that the precision is between two and three decimal digits, and bfloat16 can represent finite values up to about 3.4 × 10 38.