When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Oxaloacetic acid - Wikipedia

    en.wikipedia.org/wiki/Oxaloacetic_acid

    The glyoxylate cycle is a variant of the citric acid cycle. [4] It is an anabolic pathway occurring in plants and bacteria utilizing the enzymes isocitrate lyase and malate synthase. Some intermediate steps of the cycle are slightly different from the citric acid cycle; nevertheless oxaloacetate has the same function in both processes. [1]

  3. Ketogenesis - Wikipedia

    en.wikipedia.org/wiki/Ketogenesis

    When the body has no free carbohydrates available, fat must be broken down into acetyl-CoA in order to get energy. Under these conditions, acetyl-CoA cannot be metabolized through the citric acid cycle because the citric acid cycle intermediates (mainly oxaloacetate) have been depleted to feed the gluconeogenesis pathway. The resulting ...

  4. Gluconeogenesis - Wikipedia

    en.wikipedia.org/wiki/Gluconeogenesis

    Other glucogenic amino acids and all citric acid cycle intermediates (through conversion to oxaloacetate) can also function as substrates for gluconeogenesis. [9] Generally, human consumption of gluconeogenic substrates in food does not result in increased gluconeogenesis. [10] In ruminants, propionate is the principal gluconeogenic substrate.

  5. Citric acid cycle - Wikipedia

    en.wikipedia.org/wiki/Citric_acid_cycle

    The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle) [1] [2] —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol.

  6. Glyceroneogenesis - Wikipedia

    en.wikipedia.org/wiki/Glyceroneogenesis

    Secondly, 2-oxoglutarate can enter the tricarboxylic acid cycle to generate oxaloacetate. Therefore, theoretically any metabolites in the TCA cycle or any metabolites generating the metabolites of the TCA cycle can be used as a precursor of glyceroneogenesis, but glutamate is the only precursor confirmed.

  7. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    To cataplerotically remove oxaloacetate from the citric cycle, malate can be transported from the mitochondrion into the cytoplasm, decreasing the amount of oxaloacetate that can be regenerated. [48] Furthermore, citric acid intermediates are constantly used to form a variety of substances such as the purines, pyrimidines and porphyrins. [48]

  8. Biological carbon fixation - Wikipedia

    en.wikipedia.org/wiki/Biological_carbon_fixation

    The reverse Krebs cycle, also known as the reverse TCA cycle (rTCA) or reductive citric acid cycle, is an alternative to the standard Calvin-Benson cycle for carbon fixation. It has been found in strict anaerobic or microaerobic bacteria (as Aquificales ) and anaerobic archea .

  9. Anaplerotic reactions - Wikipedia

    en.wikipedia.org/wiki/Anaplerotic_reactions

    Malate, in the mitochondrial matrix, can be used to make pyruvate (catalyzed by malic enzyme) or oxaloacetic acid, both of which can enter the citric acid cycle. Glutamine can also be used to produce oxaloacetate during anaplerotic reactions in various cell types through "glutaminolysis," which is also seen in many c-Myc transformed cells. [3]