When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    Molecular orbital diagram of dinitrogen. With nitrogen, we see the two molecular orbitals mixing and the energy repulsion. This is the reasoning for the rearrangement from a more familiar diagram. The σ from the 2p is more non-bonding due to mixing, and same with the 2s σ. This also causes a large jump in energy in the 2p σ* orbital.

  3. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    Complete acetylene (H–C≡C–H) molecular orbital set. The left column shows MO's which are occupied in the ground state, with the lowest-energy orbital at the top. The white and grey line visible in some MO's is the molecular axis passing through the nuclei. The orbital wave functions are positive in the red regions and negative in the blue.

  4. Nitrogen - Wikipedia

    en.wikipedia.org/wiki/Nitrogen

    Molecular orbital diagram of dinitrogen molecule, N 2. There are five bonding orbitals and two antibonding orbitals (marked with an asterisk; orbitals involving the inner 1s electrons not shown), giving a total bond order of three. Atomic nitrogen, also known as active nitrogen, is highly reactive, being a triradical with three unpaired electrons.

  5. HOMO and LUMO - Wikipedia

    en.wikipedia.org/wiki/HOMO_and_LUMO

    Diagram of the HOMO and LUMO of a molecule. Each circle represents an electron in an orbital; when light of a high enough frequency is absorbed by an electron in the HOMO, it jumps to the LUMO. 3D model of the highest occupied molecular orbital in CO 2 3D model of the lowest unoccupied molecular orbital in CO 2

  6. Molecular orbital theory - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_theory

    In chemistry, molecular orbital theory (MO theory or MOT) is a method for describing the electronic structure of molecules using quantum mechanics. It was proposed early in the 20th century. The MOT explains the paramagnetic nature of O 2, which valence bond theory cannot explain. In molecular orbital theory, electrons in a molecule are not ...

  7. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    t. e. A quantum mechanical system or particle that is bound —that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical particles, which can have any amount of energy. The term is commonly used for the energy levels of the electrons in atoms, ions, or molecules, which ...

  8. Multiplicity (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(chemistry)

    The highest occupied orbital energy level of dioxygen is a pair of antibonding π* orbitals. In the ground state of dioxygen, this energy level is occupied by two electrons of the same spin, as shown in the molecular orbital diagram. The molecule, therefore, has two unpaired electrons and is in a triplet state.

  9. Hückel method - Wikipedia

    en.wikipedia.org/wiki/Hückel_method

    The method predicts how many energy levels exist for a given molecule, which levels are degenerate and it expresses the molecular orbital energies in terms of two parameters, called α, the energy of an electron in a 2p orbital, and β, the interaction energy between two 2p orbitals (the extent to which an electron is stabilized by allowing it ...