When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters). It is a main task of exploratory data analysis, and a common technique for statistical ...

  3. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The basic principle of divisive clustering was published as the DIANA (DIvisive ANAlysis clustering) algorithm. [20] Initially, all data is in the same cluster, and the largest cluster is split until every object is separate. Because there exist () ways of splitting each cluster, heuristics are needed. DIANA chooses the object with the maximum ...

  4. Ward's method - Wikipedia

    en.wikipedia.org/wiki/Ward's_method

    In statistics, Ward's method is a criterion applied in hierarchical cluster analysis. Ward's minimum variance method is a special case of the objective function approach originally presented by Joe H. Ward, Jr. [1] Ward suggested a general agglomerative hierarchical clustering procedure, where the criterion for choosing the pair of clusters to ...

  5. Single-linkage clustering - Wikipedia

    en.wikipedia.org/wiki/Single-linkage_clustering

    Single-linkage clustering. In statistics, single-linkage clustering is one of several methods of hierarchical clustering. It is based on grouping clusters in bottom-up fashion (agglomerative clustering), at each step combining two clusters that contain the closest pair of elements not yet belonging to the same cluster as each other.

  6. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    In statistics, cluster analysis is the algorithmic grouping of objects into homogeneous groups based on numerical measurements. Model-based clustering[1] bases this on a statistical model for the data, usually a mixture model. This has several advantages, including a principled statistical basis for clustering, and ways to choose the number of ...

  7. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    In statistics and data mining, X-means clustering is a variation of k-means clustering that refines cluster assignments by repeatedly attempting subdivision, and keeping the best resulting splits, until a criterion such as the Akaike information criterion (AIC) or Bayesian information criterion (BIC) is reached.

  8. Complete-linkage clustering - Wikipedia

    en.wikipedia.org/wiki/Complete-linkage_clustering

    Complete-linkage clustering. Complete-linkage clustering is one of several methods of agglomerative hierarchical clustering. At the beginning of the process, each element is in a cluster of its own. The clusters are then sequentially combined into larger clusters until all elements end up being in the same cluster.

  9. Biclustering - Wikipedia

    en.wikipedia.org/wiki/Biclustering

    Biclustering, block clustering, [1] [2] Co-clustering or two-mode clustering [3] [4] [5] is a data mining technique which allows simultaneous clustering of the rows and columns of a matrix. The term was first introduced by Boris Mirkin [ 6 ] to name a technique introduced many years earlier, [ 6 ] in 1972, by John A. Hartigan .