Search results
Results From The WOW.Com Content Network
In the study of heat conduction, the Fourier number, is the ratio of time, , to a characteristic time scale for heat diffusion, . This dimensionless group is named in honor of J.B.J. Fourier , who formulated the modern understanding of heat conduction. [ 1 ]
A version holds for Fourier series as well: if is an integrable function on a bounded interval, then the Fourier coefficients ^ of tend to 0 as . This follows by extending f {\displaystyle f} by zero outside the interval, and then applying the version of the Riemann–Lebesgue lemma on the entire real line.
The Fourier series expansion of the sawtooth function (below) looks more complicated than the simple formula () =, so it is not immediately apparent why one would need the Fourier series. While there are many applications, Fourier's motivation was in solving the heat equation .
For example, the Ramanujan tau function τ(n) arises as the sequence of Fourier coefficients of the cusp form of weight 12 for the modular group, with a 1 = 1. The space of such forms has dimension 1, which means this definition is possible; and that accounts for the action of Hecke operators on the space being by scalar multiplication (Mordell ...
That there is no one preferred way (often, one says "no canonical way") to compare the two versions of the real line which are involved in the Fourier transform—fixing the units on one line does not force the scale of the units on the other line—is the reason for the plethora of rival conventions on the definition of the Fourier transform.
The function to be transformed is first multiplied by a Gaussian function, which can be regarded as a window function, and the resulting function is then transformed with a Fourier transform to derive the time-frequency analysis. [1] The window function means that the signal near the time being analyzed will have higher weight.
Created Date: 8/30/2012 4:52:52 PM
The van Cittert–Zernike theorem, named after physicists Pieter Hendrik van Cittert and Frits Zernike, [1] is a formula in coherence theory that states that under certain conditions the Fourier transform of the intensity distribution function of a distant, incoherent source is equal to its complex visibility.