Ad
related to: power factor correction table
Search results
Results From The WOW.Com Content Network
Power factor correction brings the power factor of an AC power circuit closer to 1 by supplying or absorbing reactive power, adding capacitors or inductors that act to cancel the inductive or capacitive effects of the load, respectively. In the case of offsetting the inductive effect of motor loads, capacitors can be locally connected.
A valley-fill circuit is a type of passive power-factor correction (PFC) circuit. For purposes of illustration, a basic full-wave diode-bridge rectifier is shown in the first stage, which converts the AC input voltage to a DC voltage.
Using active rectification to implement AC/DC conversion allows a design to undergo further improvements (with more complexity) to achieve an active power factor correction, which forces the current waveform of the AC source to follow the voltage waveform, eliminating reactive currents and allowing the total system to achieve greater efficiency.
Its principal advantage is the ease with which the amount of correction can be adjusted. Synchronous condensers are an alternative to capacitor banks and static VAR compensators for power-factor correction in power grids. [3] One advantage is that the amount of reactive power from a synchronous condenser can be continuously adjusted.
Turning off the switch causes the voltage across the inductor to reverse and the current to flow through the freewheeling diodes Da+ and Da-, decreasing linearly. By controlling the switch on-time, the topology is able to control the current in phase with the mains voltage, presenting a resistive load behavior (Power-factor correction capability).
This is traditionally done using shunt capacitors and inductors (reactors), [13] much like Power Factor Correction. The most common shunt compensation device is the Static VAR Compensator (SVC). [14] SVCs use power electronics, generally Thyristors, to switch fixed capacitors and reactors.
For instance, a power factor of 0.68 means that only 68 percent of the total current supplied (in magnitude) is actually doing work; the remaining current does no work at the load. Power Factor is very important in Power sector substations. Form the national grid the sub sectors are required to have minimum amount of power factor.
Power Interface Module (PIM) - (consisting of the input rectifier, power factor correction and inverter stages) Intelligent Power Module (IPM) - (consisting of the power stages with their dedicated gate drive protection circuits. May also be integrated with the input rectifier and power factor correction stages.)