Search results
Results From The WOW.Com Content Network
The sum of all the internal angles of a simple polygon is π(n−2) radians or 180(n–2) degrees, where n is the number of sides. The formula can be proved by using mathematical induction: starting with a triangle, for which the angle sum is 180°, then replacing one side with two sides connected at another vertex, and so on.
Two to the power of n, written as 2 n, is the number of values in which the bits in a binary word of length n can be set, where each bit is either of two values. A word, interpreted as representing an integer in a range starting at zero, referred to as an "unsigned integer", can represent values from 0 (000...000 2) to 2 n − 1 (111...111 2) inclusively.
Powers of 2 appear in set theory, since a set with n members has a power set, the set of all of its subsets, which has 2 n members. Integer powers of 2 are important in computer science. The positive integer powers 2 n give the number of possible values for an n-bit integer binary number; for example, a byte may take 2 8 = 256 different values.
In general, the measures of the interior angles of a simple convex polygon with n sides add up to (n − 2) π radians, or (n − 2)180 degrees, (n − 2)2 right angles, or (n − 2) 1 / 2 turn. The supplement of an interior angle is called an exterior angle; that is, an interior angle and an exterior angle form a linear pair of angles ...
An n-sided regular polygon can be constructed with compass and straightedge if and only if n is either a power of 2 or the product of a power of 2 and distinct Fermat primes: in other words, if and only if n is of the form n = 2 k or n = 2 k p 1 p 2...p s, where k, s are nonnegative integers and the p i are distinct Fermat primes.
This is a special case of the n-gon interior angle sum formula: S = (n − 2) × 180° (here, n=4). [2] All non-self-crossing quadrilaterals tile the plane, by repeated rotation around the midpoints of their edges. [3]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Rotational symmetry of order n, also called n-fold rotational symmetry, or discrete rotational symmetry of the n th order, with respect to a particular point (in 2D) or axis (in 3D) means that rotation by an angle of (180°, 120°, 90°, 72°, 60°, 51 3 ⁄ 7 °, etc.) does not change the object. A "1-fold" symmetry is no symmetry (all ...