Search results
Results From The WOW.Com Content Network
Atop the troposphere is the tropopause, which is the functional atmospheric border that demarcates the troposphere from the stratosphere. As such, because the tropopause is an inversion layer in which air-temperature increases with altitude, the temperature of the tropopause remains constant. [2] The layer has the largest concentration of nitrogen.
The troposphere is the lowest layer of the Earth's atmosphere; it starts at the planetary boundary layer, and is the layer in which most weather phenomena occur. The troposphere contains the boundary layer, and ranges in height from an average of 9 km (5.6 mi; 30,000 ft) at the poles, to 17 km (11 mi; 56,000 ft) at the Equator.
The thermosphere (or the upper atmosphere) is the height region above 85 kilometres (53 mi), while the region between the tropopause and the mesopause is the middle atmosphere (stratosphere and mesosphere) where absorption of solar UV radiation generates the temperature maximum near an altitude of 45 kilometres (28 mi) and causes the ozone layer.
The lower stratosphere is centered around 18 kilometers above Earth's surface. The stratosphere image is dominated by blues and greens, which indicates a cooling over time. [1] Diagram showing the five primary layers of the Earth's atmosphere: exosphere, thermosphere, mesosphere, stratosphere, and troposphere. The layers are not to scale.
The thermal boundary between the troposphere (lower atmosphere) and the stratosphere (upper atmosphere) is a thermocline. Temperature generally decreases with altitude, but the heat from the day's exposure to sun is released at night, which can create a warm region at ground with colder air above.
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
Solar heating assisted by the heat released from the water vapor condensation could create such strong convective turbulence that the free convective layer comprises the entire troposphere up to the tropopause (the boundary in the Earth's atmosphere between the troposphere and the stratosphere), which is at 10 km to 18 km in the Intertropical ...
The saturated adiabatic lapse rate (SALR), or moist adiabatic lapse rate (MALR), is the decrease in temperature of a parcel of water-saturated air that rises in the atmosphere. It varies with the temperature and pressure of the parcel and is often in the range 3.6 to 9.2 °C/km (2 to 5 °F/1000 ft ), as obtained from the International Civil ...