When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    If a is replaced with the fraction m/n in the sequence, the result is equal to the 'standard' triple generator (2mn, m 2 − n 2, m 2 + n 2) after rescaling. It follows that every triple has a corresponding rational a value which can be used to generate a similar triangle (one with the same three angles and with sides in the same proportions as ...

  3. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    More generally, if the quadrilateral is a rectangle with sides a and b and diagonal d then Ptolemy's theorem reduces to the Pythagorean theorem. In this case the center of the circle coincides with the point of intersection of the diagonals. The product of the diagonals is then d 2, the right hand side of Ptolemy's relation is the sum a 2 + b 2.

  4. Pythagorean quadruple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_quadruple

    Let l = ⁠ a / 2 ⁠ and m = ⁠ b / 2 ⁠ and let n be a factor of l 2 + m 2 such that n 2 < l 2 + m 2. Then c = ⁠ l 2 + m 2 − n 2 / n ⁠ and d = ⁠ l 2 + m 2 + n 2 / n ⁠. This method generates all Pythagorean quadruples exactly once each when l and m run through all pairs of natural numbers and n runs through all permissible values ...

  5. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A square has even multiplicity for all prime factors (it is of the form a 2 for some a). The first: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 (sequence A000290 in the OEIS). A cube has all multiplicities divisible by 3 (it is of the form a 3 for some a). The first: 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728 (sequence A000578 ...

  6. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    The non-real factors come in pairs which when multiplied give quadratic polynomials with real coefficients. Since every polynomial with complex coefficients can be factored into 1st-degree factors (that is one way of stating the fundamental theorem of algebra ), it follows that every polynomial with real coefficients can be factored into ...

  7. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Let Δ be a negative integer with Δ = −dn, where d is a multiplier and Δ is the negative discriminant of some quadratic form. Take the t first primes p 1 = 2, p 2 = 3, p 3 = 5, ..., p t, for some t ∈ N. Let f q be a random prime form of G Δ with (⁠ Δ / q ⁠) = 1. Find a generating set X of G Δ.

  8. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    If 2 k + 1 is prime and k > 0, then k itself must be a power of 2, [1] so 2 k + 1 is a Fermat number; such primes are called Fermat primes. As of 2023 [update] , the only known Fermat primes are F 0 = 3 , F 1 = 5 , F 2 = 17 , F 3 = 257 , and F 4 = 65537 (sequence A019434 in the OEIS ).

  9. Composite number - Wikipedia

    en.wikipedia.org/wiki/Composite_number

    If none of its prime factors are repeated, it is called squarefree. (All prime numbers and 1 are squarefree.) For example, 72 = 2 3 × 3 2, all the prime factors are repeated, so 72 is a powerful number. 42 = 2 × 3 × 7, none of the prime factors are repeated, so 42 is squarefree. Euler diagram of numbers under 100: