Ads
related to: how to solve differential equations with initial conditions
Search results
Results From The WOW.Com Content Network
An initial value problem is a differential equation ′ = (, ()) with : where is an open set of , together with a point in the domain of (,),called the initial condition.. A solution to an initial value problem is a function that is a solution to the differential equation and satisfies
Consider the problem of calculating the shape of an unknown curve which starts at a given point and satisfies a given differential equation. Here, a differential equation can be thought of as a formula by which the slope of the tangent line to the curve can be computed at any point on the curve, once the position of that point has been calculated.
This problem, in which an ordinary differential equation is given together with an initial condition, plays a central role in all natural and engineering sciences and is also becoming increasingly important in the economic and social sciences, for example. Initial value problems are used to analyze, simulate or predict dynamic processes.
In numerical analysis, the shooting method is a method for solving a boundary value problem by reducing it to an initial value problem.It involves finding solutions to the initial value problem for different initial conditions until one finds the solution that also satisfies the boundary conditions of the boundary value problem.
Consider the ordinary differential equation =, [,] with the initial condition () = Consider a grid = for 0 ≤ k ≤ n, that is, the time step is = /, and denote = for each .
Numerical methods for ordinary differential equations approximate solutions to initial value problems of the form ′ = (,), =.. The result is approximations for the value of () at discrete times : = +, where is the time step (sometimes referred to as ) and is an integer.
Solving differential equations is not like solving algebraic equations. Not only are their solutions often unclear, but whether solutions are unique or exist at all are also notable subjects of interest. For first order initial value problems, the Peano existence theorem gives one set of circumstances in which a solution exists.
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...