When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bias of an estimator - Wikipedia

    en.wikipedia.org/wiki/Bias_of_an_estimator

    The theory of median-unbiased estimators was revived by George W. Brown in 1947: [8]. An estimate of a one-dimensional parameter θ will be said to be median-unbiased, if, for fixed θ, the median of the distribution of the estimate is at the value θ; i.e., the estimate underestimates just as often as it overestimates.

  3. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    which is an unbiased estimator of the variance of the mean in terms of the observed sample variance and known quantities. If the autocorrelations are identically zero, this expression reduces to the well-known result for the variance of the mean for independent data. The effect of the expectation operator in these expressions is that the ...

  4. Proofs involving ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_ordinary...

    Download as PDF; Printable version ... X T X is invertible and the least squares estimator for ... it estimates, , it is an unbiased estimator of . For the variance ...

  5. Minimum-variance unbiased estimator - Wikipedia

    en.wikipedia.org/wiki/Minimum-variance_unbiased...

    However, the sample standard deviation is not unbiased for the population standard deviation – see unbiased estimation of standard deviation. Further, for other distributions the sample mean and sample variance are not in general MVUEs – for a uniform distribution with unknown upper and lower bounds, the mid-range is the MVUE for the ...

  6. Gauss–Markov theorem - Wikipedia

    en.wikipedia.org/wiki/Gauss–Markov_theorem

    In statistics, the Gauss–Markov theorem (or simply Gauss theorem for some authors) [1] states that the ordinary least squares (OLS) estimator has the lowest sampling variance within the class of linear unbiased estimators, if the errors in the linear regression model are uncorrelated, have equal variances and expectation value of zero. [2]

  7. Lehmann–Scheffé theorem - Wikipedia

    en.wikipedia.org/wiki/Lehmann–Scheffé_theorem

    In statistics, the Lehmann–Scheffé theorem is a prominent statement, tying together the ideas of completeness, sufficiency, uniqueness, and best unbiased estimation. [1] The theorem states that any estimator that is unbiased for a given unknown quantity and that depends on the data only through a complete , sufficient statistic is the unique ...

  8. Point estimation - Wikipedia

    en.wikipedia.org/wiki/Point_estimation

    , X n, the estimator T is called an unbiased estimator for the parameter θ if E[T] = θ, irrespective of the value of θ. [1] For example, from the same random sample we have E(x̄) = μ (mean) and E(s 2) = σ 2 (variance), then x̄ and s 2 would be unbiased estimators for μ and σ 2. The difference E[T ] − θ is called the bias of T ; if ...

  9. Rao–Blackwell theorem - Wikipedia

    en.wikipedia.org/wiki/Rao–Blackwell_theorem

    The improved estimator is unbiased if and only if the original estimator is unbiased, as may be seen at once by using the law of total expectation. The theorem holds regardless of whether biased or unbiased estimators are used. The theorem seems very weak: it says only that the Rao–Blackwell estimator is no worse than the original estimator.