When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Magnetic dipole - Wikipedia

    en.wikipedia.org/wiki/Magnetic_dipole

    In electromagnetism, a magnetic dipole is the limit of either a closed loop of electric current or a pair of poles as the size of the source is reduced to zero while keeping the magnetic moment constant. It is a magnetic analogue of the electric dipole, but the analogy is not perfect. In particular, a true magnetic monopole, the magnetic ...

  3. Magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Magnetic_moment

    For many magnets the first non-zero term is the magnetic dipole moment. (To date, no isolated magnetic monopoles have been experimentally detected.) A magnetic dipole is the limit of either a current loop or a pair of poles as the dimensions of the source are reduced to zero while keeping the moment constant.

  4. Dipole - Wikipedia

    en.wikipedia.org/wiki/Dipole

    A theoretical magnetic point dipole has a magnetic field of exactly the same form as the electric field of an electric point dipole. A very small current-carrying loop is approximately a magnetic point dipole; the magnetic dipole moment of such a loop is the product of the current flowing in the loop and the (vector) area of the loop.

  5. Force between magnets - Wikipedia

    en.wikipedia.org/wiki/Force_between_magnets

    The most elementary force between magnets is the magnetic dipoledipole interaction. If all magnetic dipoles for each magnet are known then the net force on both magnets can be determined by summing all the interactions between the dipoles of the first magnet and the dipoles of the second magnet.

  6. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    An ideal magnetic dipole is modeled as a real magnetic dipole whose area a has been reduced to zero and its current I increased to infinity such that the product m = Ia is finite. This model clarifies the connection between angular momentum and magnetic moment, which is the basis of the Einstein–de Haas effect rotation by magnetization and ...

  7. Magnetization - Wikipedia

    en.wikipedia.org/wiki/Magnetization

    In classical electromagnetism, magnetization is the vector field that expresses the density of permanent or induced magnetic dipole moments in a magnetic material. Accordingly, physicists and engineers usually define magnetization as the quantity of magnetic moment per unit volume. [1] It is represented by a pseudovector M.

  8. Magnetism - Wikipedia

    en.wikipedia.org/wiki/Magnetism

    An electric current or magnetic dipole creates a magnetic field, and that field, in turn, imparts magnetic forces on other particles that are in the fields. Maxwell's equations, which simplify to the Biot–Savart law in the case of steady currents, describe the origin and behavior of the fields that govern these forces.

  9. Electron magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Electron_magnetic_moment

    Electron magnetic moment. In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μe) is −9.284 764 6917(29) × 10−24 J⋅T−1. [1]