Search results
Results From The WOW.Com Content Network
In statistical mechanics, the translational partition function, is that part of the partition function resulting from the movement (translation) of the center of mass. For a single atom or molecule in a low pressure gas, neglecting the interactions of molecules , the canonical ensemble q T {\displaystyle q_{T}} can be approximated by: [ 1 ]
The partition function or configuration integral, as used in probability theory, information theory and dynamical systems, is a generalization of the definition of a partition function in statistical mechanics. It is a special case of a normalizing constant in probability theory, for the Boltzmann distribution.
The partition function is a function of the temperature T and the microstate energies E 1, E 2, E 3, etc. The microstate energies are determined by other thermodynamic variables, such as the number of particles and the volume, as well as microscopic quantities like the mass of the constituent particles.
In either case, the partition function may be solved exactly using eigenanalysis. If the matrices are all the same matrix W , the partition function may be approximated as the N th power of the largest eigenvalue of W , since the trace is the sum of the eigenvalues and the eigenvalues of the product of two diagonal matrices equals the product ...
The Maxwell–Boltzmann distribution is a mathematical function that describes about how many particles in the container have a certain energy. More precisely, the Maxwell–Boltzmann distribution gives the non-normalized probability (this means that the probabilities do not add up to 1) that the state corresponding to a particular energy is ...
This is almost the partition function for the -ensemble, but it has units of volume, an unavoidable consequence of taking the above sum over volumes into an integral. Restoring the constant C {\displaystyle C} yields the proper result for Δ ( N , P , T ) {\displaystyle \Delta (N,P,T)} .
The generating function F for this transformation is of the third kind, = (,). To find F explicitly, use the equation for its derivative from the table above, =, and substitute the expression for P from equation , expressed in terms of p and Q:
The total canonical partition function of a system of identical, indistinguishable, noninteracting atoms or molecules can be divided into the atomic or molecular partition functions : [1] =! with: = /, where is the degeneracy of the jth quantum level of an individual particle, is the Boltzmann constant, and is the absolute temperature of system.