When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    Moreover, if a function is continuous at each point where it is defined, it is impossible that its graph does intersect any vertical asymptote. A common example of a vertical asymptote is the case of a rational function at a point x such that the denominator is zero and the numerator is non-zero.

  3. AP Precalculus - Wikipedia

    en.wikipedia.org/wiki/AP_Precalculus

    Rational Functions and End Behavior 2 1.8 Rational Functions and Zeros 1 1.9 Rational Functions and Vertical Asymptotes 1 1.10 Rational Functions and Holes 1 1.11 Equivalent Representations of Polynomial and Rational Expressions 2 1.12 Transformations of Functions 2 1.13 Function Model Selection and Assumption Articulation 2 1.14

  4. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    The degree of the graph of a rational function is not the degree as defined above: it is the maximum of the degree of the numerator and one plus the degree of the denominator. In some contexts, such as in asymptotic analysis, the degree of a rational function is the difference between the degrees of the numerator and the denominator.

  5. End (graph theory) - Wikipedia

    en.wikipedia.org/wiki/End_(graph_theory)

    In the mathematics of infinite graphs, an end of a graph represents, intuitively, a direction in which the graph extends to infinity. Ends may be formalized mathematically as equivalence classes of infinite paths, as havens describing strategies for pursuit–evasion games on the graph, or (in the case of locally finite graphs) as topological ends of topological spaces associated with the graph.

  6. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    Polynomial graphs are analyzed in calculus using intercepts, slopes, concavity, and end behavior. ... a rational function is defined only for the values of the ...

  7. Asymptotic analysis - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_analysis

    In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n 2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n 2.

  8. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  9. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    A natural follow-up question one might ask is if there is a function which is continuous on the rational numbers and discontinuous on the irrational numbers. This turns out to be impossible. The set of discontinuities of any function must be an F σ set. If such a function existed, then the irrationals would be an F σ set.