Ad
related to: axis of symmetry parabola formula worksheetstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
The line perpendicular to the directrix and passing through the focus (that is, the line that splits the parabola through the middle) is called the "axis of symmetry". The point where the parabola intersects its axis of symmetry is called the "vertex" and is the point where the parabola is most sharply curved. The distance between the vertex ...
Parabolas have only one focus, so, by convention, confocal parabolas have the same focus and the same axis of symmetry. Consequently, any point not on the axis of symmetry lies on two confocal parabolas which intersect orthogonally (see below). A circle is an ellipse with both foci coinciding at the center.
A three-dimensional version of parabolic coordinates is obtained by rotating the two-dimensional system about the symmetry axis of the parabolas. Parabolic coordinates have found many applications, e.g., the treatment of the Stark effect and the potential theory of the edges.
On a parabola, the sole vertex lies on the axis of symmetry and in a quadratic of the form: + + it can be found by completing the square or by differentiation. [2] On an ellipse, two of the four vertices lie on the major axis and two lie on the minor axis. [4]
In this position, the hyperbolic paraboloid opens downward along the x-axis and upward along the y-axis (that is, the parabola in the plane x = 0 opens upward and the parabola in the plane y = 0 opens downward). Any paraboloid (elliptic or hyperbolic) is a translation surface, as it can be generated by a moving parabola directed by a second ...
If a parabola is positioned in Cartesian coordinates with its vertex at the origin and its axis of symmetry along the y-axis, so the parabola opens upward, its equation is =, where is its focal length. (See "Parabola#In a cartesian coordinate system".)
Whitney umbrella as a ruled surface, generated by a moving straight line Whitney umbrella made with a single string inside a plastic cube. Whitney's umbrella is a ruled surface and a right conoid.
The second term, / , gives the distance the roots are away from the axis of symmetry. If the parabola's vertex is on the -axis, then the corresponding equation has a single repeated root on the line of symmetry, and this distance term is zero; algebraically, the discriminant = .