Ad
related to: cubic monomial example problems
Search results
Results From The WOW.Com Content Network
Here are some examples. Every polynomial is associated to a unique monic polynomial. In particular, the unique factorization property of polynomials can be stated as: Every polynomial can be uniquely factorized as the product of its leading coefficient and a product of monic irreducible polynomials.
The discriminant Δ of the cubic is the square of = () (), where a is the leading coefficient of the cubic, and r 1, r 2 and r 3 are the three roots of the cubic. As Δ {\displaystyle {\sqrt {\Delta }}} changes of sign if two roots are exchanged, Δ {\displaystyle {\sqrt {\Delta }}} is fixed by the Galois group only if the Galois group is A 3 .
In mathematics, a monomial is, roughly speaking, a polynomial which has only one term.Two definitions of a monomial may be encountered: A monomial, also called a power product or primitive monomial, [1] is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions. [2]
Hand-drawn technical drawings for shipbuilding are a historical example of spline interpolation; drawings were constructed using flexible rulers that were bent to follow pre-defined points. Originally, spline was a term for elastic rulers that were bent to pass through a number of predefined points, or knots .
This problem is commonly resolved by the use of spline interpolation. Here, the interpolant is not a polynomial but a spline: a chain of several polynomials of a lower degree. Interpolation of periodic functions by harmonic functions is accomplished by Fourier transform.
A common spline is the natural cubic spline. A cubic spline has degree 3 with continuity C 2, i.e. the values and first and second derivatives are continuous. Natural means that the second derivatives of the spline polynomials are zero at the endpoints of the interval of interpolation.
The characteristic polynomial of a square matrix is an example of application of Vieta's formulas. The roots of this polynomial are the eigenvalues of the matrix . When we substitute these eigenvalues into the elementary symmetric polynomials, we obtain – up to their sign – the coefficients of the characteristic polynomial, which are ...
The Darboux cubic is the locus of a point X such that X* is on the line LX, where L is the de Longchamps point. Also, this cubic is the locus of X such that the pedal triangle of X is the cevian triangle of some point (which lies on the Lucas cubic).