When.com Web Search

  1. Ad

    related to: how enzyme concentration affects activity of dna translation system

Search results

  1. Results From The WOW.Com Content Network
  2. Deoxyribozyme - Wikipedia

    en.wikipedia.org/wiki/Deoxyribozyme

    Although RNA enzymes were discovered before DNA enzymes, the latter have some distinct advantages. DNA is more cost-effective, and DNA can be made with longer sequence length and can be made with higher purity in solid-phase synthesis. [30] Several studies have shown the usage of DNAzymes to inhibit influenza A and B virus replication in host ...

  3. Attenuator (genetics) - Wikipedia

    en.wikipedia.org/wiki/Attenuator_(genetics)

    Attenuators may be classified according to the type of molecule which induces the change in RNA structure. It is likely that transcription-attenuation mechanisms developed early, perhaps prior to the archaea/bacteria separation and have since evolved to use a number of different sensing molecules (the tryptophan biosynthetic operon has been found to use three different mechanisms in different ...

  4. Transcription-translation coupling - Wikipedia

    en.wikipedia.org/wiki/Transcription-translation...

    Translation promotes transcription elongation and regulates transcription termination. Functional coupling between transcription and translation is caused by direct physical interactions between the ribosome and RNA polymerase ("expressome complex"), ribosome-dependent changes to nascent mRNA secondary structure which affect RNA polymerase activity (e.g. "attenuation"), and ribosome-dependent ...

  5. Transcriptional regulation - Wikipedia

    en.wikipedia.org/wiki/Transcriptional_regulation

    Cis-regulatory DNA sequences that are located in DNA regions distant from the promoters of genes can have very large effects on gene expression, with some genes undergoing up to 100-fold increased expression due to such a cis-regulatory sequence. [36] These cis-regulatory sequences include enhancers, silencers, insulators and tethering elements ...

  6. Post-translational modification - Wikipedia

    en.wikipedia.org/wiki/Post-translational...

    Phosphorylation is highly effective for controlling the enzyme activity and is the most common change after translation. [2] Many eukaryotic and prokaryotic proteins also have carbohydrate molecules attached to them in a process called glycosylation, which can promote protein folding and improve stability as well as serving regulatory functions.

  7. trp operon - Wikipedia

    en.wikipedia.org/wiki/Trp_operon

    Structure of the trp operon. The trp operon is a group of genes that are transcribed together, encoding the enzymes that produce the amino acid tryptophan in bacteria. The trp operon was first characterized in Escherichia coli, and it has since been discovered in many other bacteria. [1]

  8. Eukaryotic translation - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_translation

    Translation is one of the key energy consumers in cells, hence it is strictly regulated. Numerous mechanisms have evolved that control and regulate translation in eukaryotes as well as prokaryotes. Regulation of translation can impact the global rate of protein synthesis which is closely coupled to the metabolic and proliferative state of a cell.

  9. Gene expression - Wikipedia

    en.wikipedia.org/wiki/Gene_expression

    An expression system consists of a gene, normally encoded by DNA, and the molecular machinery required to transcribe the DNA into mRNA and translate the mRNA into protein using the reagents provided. In the broadest sense this includes every living cell but the term is more normally used to refer to expression as a laboratory tool.