Search results
Results From The WOW.Com Content Network
A linear equation in line coordinates has the form al + bm + c = 0, where a, b and c are constants. Suppose (l, m) is a line that satisfies this equation.If c is not 0 then lx + my + 1 = 0, where x = a/c and y = b/c, so every line satisfying the original equation passes through the point (x, y).
Each axis is usually named after the coordinate which is measured along it; so one says the x-axis, the y-axis, the t-axis, etc. Another common convention for coordinate naming is to use subscripts, as ( x 1 , x 2 , ..., x n ) for the n coordinates in an n -dimensional space, especially when n is greater than 3 or unspecified.
abscissa-axis (horizontal) coordinate ordinate-axis (vertical) coordinate. Together they form an ordered pair which defines the location of a point in two-dimensional rectangular space. More technically, the abscissa of a point is the signed measure of its projection on the primary axis.
Here, p is the (positive) length of the line segment perpendicular to the line and delimited by the origin and the line, and is the (oriented) angle from the x-axis to this segment. It may be useful to express the equation in terms of the angle α = φ + π / 2 {\displaystyle \alpha =\varphi +\pi /2} between the x -axis and the line.
This proof is valid only if the line is not horizontal or vertical. [5] Drop a perpendicular from the point P with coordinates (x 0, y 0) to the line with equation Ax + By + C = 0. Label the foot of the perpendicular R. Draw the vertical line through P and label its intersection with the given line S.
Another common coordinate system for the plane is the polar coordinate system. [7] A point is chosen as the pole and a ray from this point is taken as the polar axis. For a given angle θ, there is a single line through the pole whose angle with the polar axis is θ (measured counterclockwise from the
The point E is an arbitrary point on the parabola. The focus is F, the vertex is A (the origin), and the line FA is the axis of symmetry. The line EC is parallel to the axis of symmetry, intersects the x axis at D and intersects the directrix at C. The point B is the midpoint of the line segment FC.
The word horizontal is derived from the Latin horizon, which derives from the Greek ὁρῐ́ζων, meaning 'separating' or 'marking a boundary'. [2] The word vertical is derived from the late Latin verticalis, which is from the same root as vertex, meaning 'highest point' or more literally the 'turning point' such as in a whirlpool.