Search results
Results From The WOW.Com Content Network
For most non-electrolytes dissolved in water, the van 't Hoff factor is essentially 1. For most ionic compounds dissolved in water, the van 't Hoff factor is equal to the number of discrete ions in a formula unit of the substance. This is true for ideal solutions only, as occasionally ion pairing occurs in solution. At a given instant a small ...
When B / C > 1, B is the favored product, and the data on the Van 't Hoff plot will be in the positive region. When B / C < 1, C is the favored product, and the data on the Van 't Hoff plot will be in the negative region. Using this information, a Van 't Hoff analysis can help determine the most suitable temperature for a ...
In case of very strong acids and bases, degree of dissociation will be close to 1. Less powerful acids and bases will have lesser degree of dissociation. There is a simple relationship between this parameter and the van 't Hoff factor. If the solute substance dissociates into ions, then
In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...
The degree of dissociation is measured by determining the van 't Hoff factor i by first determining m B and then comparing it to m solute. In this case, the molar mass of the solute must be known. The molar mass of a solute is determined by comparing m B with the amount of solute dissolved.
In 1884, Jacobus van 't Hoff proposed the Van 't Hoff equation describing the temperature dependence of the equilibrium constant for a reversible reaction: = where ΔU is the change in internal energy, K is the equilibrium constant of the reaction, R is the universal gas constant, and T is thermodynamic temperature.
The third of seven children, van 't Hoff was born in Rotterdam, Netherlands, 30 August 1852. His father was Jacobus Henricus van 't Hoff Sr., a physician, and his mother was Alida Kolff van 't Hoff. [10] From a young age, he was interested in science and nature, and frequently took part in botanical excursions.
According to the Van´t Hoff equation, the relation between free energy, ΔG, and K is ΔG° = -RTln K, where R is the ideal gas law constant, and T is the kelvin temperature of the reaction. This gives, for the nucleic acid system,