When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Citric acid cycle - Wikipedia

    en.wikipedia.org/wiki/Citric_acid_cycle

    Overview of the citric acid cycle. The citric acid cycle—also known as the Krebs cycle, Szent–Györgyi–Krebs cycle, or TCA cycle (tricarboxylic acid cycle) [1] [2] —is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, proteins, and alcohol.

  3. Substrate-level phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Substrate-level_phosphory...

    Occurs in glycolysis and in the citric acid cycle. [1] Unlike oxidative phosphorylation, oxidation and phosphorylation are not coupled in the process of substrate-level phosphorylation, and reactive intermediates are most often gained in the course of oxidation processes in catabolism.

  4. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    NAD + is the oxidizing agent in glycolysis, as it is in most other energy yielding metabolic reactions (e.g. beta-oxidation of fatty acids, and during the citric acid cycle). The NADH thus produced is primarily used to ultimately transfer electrons to O 2 to produce water, or, when O 2 is not available, to produce compounds such as lactate or ...

  5. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    The citric acid cycle is also called the Krebs cycle or the tricarboxylic acid cycle. When oxygen is present, acetyl-CoA is produced from the pyruvate molecules created from glycolysis. Once acetyl-CoA is formed, aerobic or anaerobic respiration can occur. When oxygen is present, the mitochondria will undergo aerobic respiration which leads to ...

  6. Fatty acid metabolism - Wikipedia

    en.wikipedia.org/wiki/Fatty_acid_metabolism

    Instead the acetyl-CoA produced by the beta-oxidation of fatty acids condenses with oxaloacetate, to enter the citric acid cycle. During each turn of the cycle, two carbon atoms leave the cycle as CO 2 in the decarboxylation reactions catalyzed by isocitrate dehydrogenase and alpha-ketoglutarate dehydrogenase. Thus each turn of the citric acid ...

  7. Metabolic pathway - Wikipedia

    en.wikipedia.org/wiki/Metabolic_pathway

    All cells can perform anaerobic respiration by glycolysis. Additionally, most organisms can perform more efficient aerobic respiration through the citric acid cycle and oxidative phosphorylation. Additionally plants, algae and cyanobacteria are able to use sunlight to anabolically synthesize compounds from non-living matter by photosynthesis.

  8. Carbohydrate metabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_metabolism

    Typically, the complete breakdown of one molecule of glucose by aerobic respiration (i.e. involving glycolysis, the citric-acid cycle and oxidative phosphorylation, the last providing the most energy) is usually about 30–32 molecules of ATP. [16] Oxidation of one gram of carbohydrate yields approximately 4 kcal of energy. [3]

  9. Catabolism - Wikipedia

    en.wikipedia.org/wiki/Catabolism

    Examples of catabolic processes include glycolysis, the citric acid cycle, the breakdown of muscle protein in order to use amino acids as substrates for gluconeogenesis, the breakdown of fat in adipose tissue to fatty acids, and oxidative deamination of neurotransmitters by monoamine oxidase.