Search results
Results From The WOW.Com Content Network
The Weibull modulus is a dimensionless parameter of the Weibull distribution. It represents the width of a probability density function (PDF) in which a higher modulus is a characteristic of a narrower distribution of values.
In the field of materials science, the shape parameter k of a distribution of strengths is known as the Weibull modulus. In the context of diffusion of innovations, the Weibull distribution is a "pure" imitation/rejection model.
The Weibull distribution or Rosin Rammler distribution, of which the exponential distribution is a special case, is used to model the lifetime of technical devices and is used to describe the particle size distribution of particles generated by grinding, milling and crushing operations. The modified half-normal distribution. [1]
The Kaniadakis κ-Weibull distribution is exhibits power-law right tails, and it has the following probability density function: [3] = + ()valid for , where | | < is the entropic index associated with the Kaniadakis entropy, > is the scale parameter, and > is the shape parameter or Weibull modulus.
The first source of variability is statistical, due to the limitations of having a finite sample size to estimate parameters such as yield stress, Young's modulus, and true strain. [7] Measurement uncertainty is the most easily minimized out of these three sources, as variance is proportional to the inverse of the sample size.
The fact that the Weibull size effect is a power law means that it is self-similar, i.e., no characteristic structure size exists, and and material inhomogeneities are negligible compared to . This is the case for fatigue-embrittled metals or fine-grained ceramics except on the micrometer scale.
The Discrete Weibull Distribution, first introduced by Toshio Nakagawa and Shunji Osaki, is a discrete analog of the continuous Weibull distribution, predominantly used in reliability engineering. It is particularly applicable for modeling failure data measured in discrete units like cycles or shocks.
The Weibull distribution or Rosin–Rammler distribution is a useful distribution for representing particle size distributions generated by grinding, milling and crushing operations. The log-hyperbolic distribution was proposed by Bagnold and Barndorff-Nielsen [9] to model the particle-size distribution of naturally occurring sediments. This ...