Search results
Results From The WOW.Com Content Network
Allosteric regulation of an enzyme. In the fields of biochemistry and pharmacology an allosteric regulator (or allosteric modulator) is a substance that binds to a site on an enzyme or receptor distinct from the active site, resulting in a conformational change that alters the protein's activity, either enhancing or inhibiting its function.
The site that an allosteric modulator binds to (i.e., an allosteric site) is not the same one to which an endogenous agonist of the receptor would bind (i.e., an orthosteric site). Modulators and agonists can both be called receptor ligands. [2] Allosteric modulators can be 1 of 3 types either: positive, negative or neutral.
For example, an inhibitor might compete with substrate A for the first binding site, but be a non-competitive inhibitor with respect to substrate B in the second binding site. [ 26 ] Traditionally reversible enzyme inhibitors have been classified as competitive, uncompetitive, or non-competitive, according to their effects on K m and V max . [ 14 ]
Effectors that enhance the protein's activity are referred to as allosteric activators, whereas those that decrease the protein's activity are called allosteric inhibitors. [citation needed] Allosteric regulations are a natural example of control loops, such as feedback from downstream products or feedforward from upstream substrates. Long ...
It is important to note that while all non-competitive inhibitors bind the enzyme at allosteric sites (i.e. locations other than its active site)—not all inhibitors that bind at allosteric sites are non-competitive inhibitors. [1] In fact, allosteric inhibitors may act as competitive, non-competitive, or uncompetitive inhibitors. [1] Many ...
A competitive inhibitor could bind to an allosteric site of the free enzyme and prevent substrate binding, as long as it does not bind to the allosteric site when the substrate is bound. For example, strychnine acts as an allosteric inhibitor of the glycine receptor in the mammalian spinal cord and brain stem. Glycine is a major post-synaptic ...
Thrombin demonstrates a high level of allosteric regulation. [2] Allosterism in thrombin is regulated by the exosites 1 and 2 and the sodium binding site. A recent patent review has shown that the general consensus among researchers is that allosteric inhibitors may provide a more regulatable anticoagulant. [3]
Acetylcholinesterase inhibitors are one of two types of cholinesterase inhibitors; the other being butyryl-cholinesterase inhibitors. [2] Acetylcholinesterase is the primary member of the cholinesterase enzyme family. [3] Acetylcholinesterase inhibitors are classified as reversible, irreversible, or quasi-irreversible (also called pseudo ...