When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Vision transformer - Wikipedia

    en.wikipedia.org/wiki/Vision_transformer

    The architecture of vision transformer. An input image is divided into patches, each of which is linearly mapped through a patch embedding layer, before entering a standard Transformer encoder. A vision transformer (ViT) is a transformer designed for computer vision. [1] A ViT decomposes an input image into a series of patches (rather than text ...

  3. Contrastive Language-Image Pre-training - Wikipedia

    en.wikipedia.org/wiki/Contrastive_Language-Image...

    For the CLIP image models, the input images are preprocessed by first dividing each of the R, G, B values of an image by the maximum possible value, so that these values fall between 0 and 1, then subtracting by [0.48145466, 0.4578275, 0.40821073], and dividing by [0.26862954, 0.26130258, 0.27577711].

  4. Attention Is All You Need - Wikipedia

    en.wikipedia.org/wiki/Attention_Is_All_You_Need

    The name "Transformer" was picked because Jakob Uszkoreit, one of the paper's authors, liked the sound of that word. [9] An early design document was titled "Transformers: Iterative Self-Attention and Processing for Various Tasks", and included an illustration of six characters from the Transformers animated show. The team was named Team ...

  5. Text-to-image model - Wikipedia

    en.wikipedia.org/wiki/Text-to-image_model

    An image conditioned on the prompt an astronaut riding a horse, by Hiroshige, generated by Stable Diffusion 3.5, a large-scale text-to-image model first released in 2022. A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description.

  6. Bag-of-words model in computer vision - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model_in...

    In computer vision, the bag-of-words model (BoW model) sometimes called bag-of-visual-words model [1] [2] can be applied to image classification or retrieval, by treating image features as words. In document classification, a bag of words is a sparse vector of occurrence counts of words; that is, a sparse histogram over the vocabulary.

  7. Contextual image classification - Wikipedia

    en.wikipedia.org/.../Contextual_image_classification

    Contextual image classification, a topic of pattern recognition in computer vision, is an approach of classification based on contextual information in images. "Contextual" means this approach is focusing on the relationship of the nearby pixels, which is also called neighbourhood.

  8. Graph neural network - Wikipedia

    en.wikipedia.org/wiki/Graph_neural_network

    A convolutional neural network layer, in the context of computer vision, can be considered a GNN applied to graphs whose nodes are pixels and only adjacent pixels are connected by edges in the graph. A transformer layer, in natural language processing , can be considered a GNN applied to complete graphs whose nodes are words or tokens in a ...

  9. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    Images Classification 2009 [18] [36] A. Krizhevsky et al. CIFAR-100 Dataset Like CIFAR-10, above, but 100 classes of objects are given. Classes labelled, training set splits created. 60,000 Images Classification 2009 [18] [36] A. Krizhevsky et al. CINIC-10 Dataset A unified contribution of CIFAR-10 and Imagenet with 10 classes, and 3 splits.