When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sum of squares - Wikipedia

    en.wikipedia.org/wiki/Sum_of_squares

    A Pythagorean prime is a prime that is the sum of two squares; Fermat's theorem on sums of two squares states which primes are Pythagorean primes. Pythagorean triangles with integer altitude from the hypotenuse have the sum of squares of inverses of the integer legs equal to the square of the inverse of the integer altitude from the hypotenuse.

  3. Total sum of squares - Wikipedia

    en.wikipedia.org/wiki/Total_sum_of_squares

    In statistical data analysis the total sum of squares (TSS or SST) is a quantity that appears as part of a standard way of presenting results of such analyses. For a set of observations, y i , i ≤ n {\displaystyle y_{i},i\leq n} , it is defined as the sum over all squared differences between the observations and their overall mean y ...

  4. Explained sum of squares - Wikipedia

    en.wikipedia.org/wiki/Explained_sum_of_squares

    The explained sum of squares (ESS) is the sum of the squares of the deviations of the predicted values from the mean value of a response variable, in a standard regression model — for example, y i = a + b 1 x 1i + b 2 x 2i + ... + ε i, where y i is the i th observation of the response variable, x ji is the i th observation of the j th ...

  5. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    The primary application of the Levenberg–Marquardt algorithm is in the least-squares curve fitting problem: given a set of empirical pairs (,) of independent and dependent variables, find the parameters ⁠ ⁠ of the model curve (,) so that the sum of the squares of the deviations () is minimized:

  6. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  7. Sum of squares function - Wikipedia

    en.wikipedia.org/wiki/Sum_of_squares_function

    The number of ways to write a natural number as sum of two squares is given by r 2 (n).It is given explicitly by = (() ())where d 1 (n) is the number of divisors of n which are congruent to 1 modulo 4 and d 3 (n) is the number of divisors of n which are congruent to 3 modulo 4.

  8. Partition of sums of squares - Wikipedia

    en.wikipedia.org/wiki/Partition_of_sums_of_squares

    If the sum of squares were not normalized, its value would always be larger for the sample of 100 people than for the sample of 20 people. To scale the sum of squares, we divide it by the degrees of freedom, i.e., calculate the sum of squares per degree of freedom, or variance. Standard deviation, in turn, is the square root of the variance.

  9. Segmented regression - Wikipedia

    en.wikipedia.org/wiki/Segmented_regression

    The least squares method applied separately to each segment, by which the two regression lines are made to fit the data set as closely as possible while minimizing the sum of squares of the differences (SSD) between observed (y) and calculated (Yr) values of the dependent variable, results in the following two equations: