Search results
Results From The WOW.Com Content Network
In electromagnetism, permeability is the measure of magnetization produced in a material in response to an applied magnetic field.Permeability is typically represented by the (italicized) Greek letter μ.
In the old "electromagnetic (emu)" system of units, defined in the late 19th century, k m was chosen to be a pure number equal to 2, distance was measured in centimetres, force was measured in the cgs unit dyne, and the currents defined by this equation were measured in the "electromagnetic unit (emu) of current", the "abampere". A practical ...
Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field. Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths.
The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interactions of atoms and molecules. Electromagnetism can be thought of as a combination of electrostatics and magnetism, which are distinct but closely intertwined phenomena. Electromagnetic forces occur between any two charged particles.
In electromagnetism, the impedance of free space, Z 0, is a physical constant relating the magnitudes of the electric and magnetic fields of electromagnetic radiation travelling through free space.
In the differential form formulation on arbitrary space times, F = 1 / 2 F αβ dx α ∧ dx β is the electromagnetic tensor considered as a 2-form, A = A α dx α is the potential 1-form, = is the current 3-form, d is the exterior derivative, and is the Hodge star on forms defined (up to its orientation, i.e. its sign) by the ...
There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally ...
Magnetic field (green) induced by a current-carrying wire winding (red) in a magnetic circuit consisting of an iron core C forming a closed loop with two air gaps G in it. In an analogy to an electric circuit, the winding acts analogously to an electric battery, providing the magnetizing field , the core pieces act like wires, and the gaps G act like resistors.