When.com Web Search

  1. Ads

    related to: 3 dimensional foliation formula worksheet free pdf printable

Search results

  1. Results From The WOW.Com Content Network
  2. Foliation - Wikipedia

    en.wikipedia.org/wiki/Foliation

    2-dimensional section of Reeb foliation 3-dimensional model of Reeb foliation. In mathematics (differential geometry), a foliation is an equivalence relation on an n-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension p, modeled on the decomposition of the real coordinate space R n into the cosets x + R p of the standardly embedded ...

  3. Reeb foliation - Wikipedia

    en.wikipedia.org/wiki/Reeb_foliation

    In mathematics, the Reeb foliation is a particular foliation of the 3-sphere, introduced by the French mathematician Georges Reeb (1920–1993). It is based on dividing the sphere into two solid tori , along a 2- torus : see Clifford torus .

  4. Distribution (differential geometry) - Wikipedia

    en.wikipedia.org/wiki/Distribution_(differential...

    The distribution/foliation is regular if and only if the action is free. Given a Poisson manifold ( M , π ) {\displaystyle (M,\pi )} , the image of π ♯ = ι π : T ∗ M → T M {\displaystyle \pi ^{\sharp }=\iota _{\pi }:T^{*}M\to TM} is a singular distribution which is always integrable; the leaves of the associated singular foliation are ...

  5. Novikov's compact leaf theorem - Wikipedia

    en.wikipedia.org/wiki/Novikov's_compact_leaf_theorem

    The leaf is a torus T 2 bounding a solid torus with the Reeb foliation. The theorem was proved by Sergei Novikov in 1964. Earlier, Charles Ehresmann had conjectured that every smooth codimension-one foliation on S 3 had a compact leaf, which was known to be true for all known examples; in particular, the Reeb foliation has a compact leaf that ...

  6. Frobenius theorem (differential topology) - Wikipedia

    en.wikipedia.org/wiki/Frobenius_theorem...

    A p-dimensional, class C r foliation of an n-dimensional manifold M is a decomposition of M into a union of disjoint connected submanifolds {L α} α∈A, called the leaves of the foliation, with the following property: Every point in M has a neighborhood U and a system of local, class C r coordinates x=(x 1, ⋅⋅⋅, x n) : U→R n such that ...

  7. Haefliger structure - Wikipedia

    en.wikipedia.org/wiki/Haefliger_structure

    An advantage of Haefliger structures over foliations is that they are closed under pullbacks.More precisely, given a Haefliger structure on , defined by a Haefliger cocycle , and a continuous map :, the pullback Haefliger structure on is defined by the open cover () and the cocycle .