When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. M-matrix - Wikipedia

    en.wikipedia.org/wiki/M-matrix

    An M-matrix is commonly defined as follows: Definition: Let A be a n × n real Z-matrix.That is, A = (a ij) where a ij ≤ 0 for all i ≠ j, 1 ≤ i,j ≤ n.Then matrix A is also an M-matrix if it can be expressed in the form A = sI − B, where B = (b ij) with b ij ≥ 0, for all 1 ≤ i,j ≤ n, where s is at least as large as the maximum of the moduli of the eigenvalues of B, and I is an ...

  3. Kronecker product - Wikipedia

    en.wikipedia.org/wiki/Kronecker_product

    If A is an m × n matrix and B is a p × q matrix, then the Kronecker product A ⊗ B is the pm × qn block matrix: = [], more explicitly: = []. Using / / and % to denote truncating integer division and remainder, respectively, and numbering the matrix elements starting from 0, one obtains

  4. Category of matrices - Wikipedia

    en.wikipedia.org/wiki/Category_of_matrices

    A stochastic matrix is a real matrix of nonnegative entries, such that the sum of each column is one. Stochastic matrices include the identity and are closed under composition, and so they form a subcategory of M a t R {\displaystyle \mathbf {Mat} _{\mathbb {R} }} .

  5. In-place matrix transposition - Wikipedia

    en.wikipedia.org/wiki/In-place_matrix_transposition

    For a square N×N matrix A n,m = A(n,m), in-place transposition is easy because all of the cycles have length 1 (the diagonals A n,n) or length 2 (the upper triangle is swapped with the lower triangle). Pseudocode to accomplish this (assuming zero-based array indices) is: for n = 0 to N - 1 for m = n + 1 to N swap A(n,m) with A(m,n)

  6. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    The n × n matrices that have an inverse form a group under matrix multiplication, the subgroups of which are called matrix groups. Many classical groups (including all finite groups ) are isomorphic to matrix groups; this is the starting point of the theory of group representations .

  7. Non-negative least squares - Wikipedia

    en.wikipedia.org/wiki/Non-negative_least_squares

    a real-valued matrix A of dimension m × n, a real-valued vector y of dimension m, a real value ε, the tolerance for the stopping criterion. Initialize: Set P = ∅. Set R = {1, ..., n}. Set x to an all-zero vector of dimension n. Set w = A T (y − Ax). Let w R denote the sub-vector with indexes from R; Main loop: while R ≠ ∅ and max(w R ...

  8. Non-negative matrix factorization - Wikipedia

    en.wikipedia.org/wiki/Non-negative_matrix...

    For example, if V is an m × n matrix, W is an m × p matrix, and H is a p × n matrix then p can be significantly less than both m and n. Here is an example based on a text-mining application: Let the input matrix (the matrix to be factored) be V with 10000 rows and 500 columns where words are in rows and documents are in columns. That is, we ...

  9. Cauchy–Binet formula - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Binet_formula

    If A is a real m×n matrix, then det(A A T) is equal to the square of the m-dimensional volume of the parallelotope spanned in R n by the m rows of A. Binet's formula states that this is equal to the sum of the squares of the volumes that arise if the parallelepiped is orthogonally projected onto the m -dimensional coordinate planes (of which ...