Search results
Results From The WOW.Com Content Network
The scikit-multiflow library is implemented under the open research principles and is currently distributed under the BSD 3-clause license. scikit-multiflow is mainly written in Python, and some core elements are written in Cython for performance. scikit-multiflow integrates with other Python libraries such as Matplotlib for plotting, scikit-learn for incremental learning methods [4 ...
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. K-dimensional is that which concerns exactly k orthogonal axes or a space of any number of dimensions. [1] k-d trees are a useful data structure for several applications, such as:
The corresponding implicit k-d trees are complete implicit k-d trees. A complete splitting function is for example the grid median splitting-function. It creates fairly balanced implicit k-d trees by using k-dimensional integer hyperrectangles hyprec[2][k] belonging to each node of the implicit k-d tree. The hyperrectangles define which ...
A decision tree or a classification tree is a tree in which each internal (non-leaf) node is labeled with an input feature. The arcs coming from a node labeled with an input feature are labeled with each of the possible values of the target feature or the arc leads to a subordinate decision node on a different input feature.
SciPy (pronounced / ˈ s aɪ p aɪ / "sigh pie" [2]) is a free and open-source Python library used for scientific computing and technical computing. [3]SciPy contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering.
In computer science, a K-D-B-tree (k-dimensional B-tree) is a tree data structure for subdividing a k-dimensional search space. The aim of the K-D-B-tree is to provide the search efficiency of a balanced k-d tree , while providing the block-oriented storage of a B-tree for optimizing external memory accesses.
The package fpc does not have index support (and thus has quadratic runtime and memory complexity) and is rather slow due to the R interpreter. The package dbscan provides a fast C++ implementation using k-d trees (for Euclidean distance only) and also includes implementations of DBSCAN*, HDBSCAN*, OPTICS, OPTICSXi, and other related methods.